1
|
Wei X, Li H, Wu S, Zhu T, Sui R. Genetic analysis and clinical features of three Chinese patients with Oguchi disease. Doc Ophthalmol 2023; 146:17-32. [PMID: 36417138 DOI: 10.1007/s10633-022-09910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness caused by disease-causing variants in the rhodopsin kinase gene (GRK1) or the arrestin gene (SAG). Our study aims to describe the clinical features and identify the genetic defects for three Chinese patients with Oguchi disease. METHODS We conducted detailed ophthalmologic examinations for three patients from three unrelated non-consanguineous Chinese families. Targeted next-generation sequencing (targeted NGS) and copy number variations (CNVs) analysis were applied to screen pathogenic variants. Sanger sequencing validation, quantitative real-time PCR (qPCR), and segregation analysis were further performed for confirmation. Subsequently, a combined genetic and structural biology approach was used to infer the likely functional consequences of novel variants. RESULTS All three patients presented with typical clinical features of Oguchi disease, including night blindness, characteristic fundus appearance (Mizuo-Nakamura phenomenon), attenuated rod responses, and negative ERG waveforms. Their visual acuity and visual field were normal. Genetic analysis revealed two pathogenic variants in SAG and four pathogenic variants in GRK1. Patient 1 was identified to harbor compound heterozygous SAG variants c.874C > T (p.R292*) and exon2 deletion. Compound heterozygous GRK1 variants c.55C > T (p.R19*) and c.1412delC (p.P471Lfs*52) were found in patient 2. In patient 3, compound heterozygous GRK1 variants c.946C > A (p.R316S) and c.1388 T > C (p. L463P) were detected. CONCLUSIONS We reported the first two Chinese Oguchi patients with novel GRK1 pathogenic variants (P471Lfs*52, R316S, L463P) and one Oguchi case with SAG, indicating both GRK1 and SAG are important causative genes in Chinese Oguchi patients.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
2
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
3
|
Deng Z, Fan F, Tang D, Wu Y, Shu Y, Wu K. A compound heterozygous mutation in the S-Antigen Visual Arrestin SAG gene in a Chinese patient with Oguchi type one: a case report. BMC Ophthalmol 2022; 22:99. [PMID: 35246075 PMCID: PMC8895538 DOI: 10.1186/s12886-022-02307-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Oguchi disease is a rare autosomal recessive form of congenital quiescent night blindness. Oguchi disease has been found to be associated with gene mutations in SAG and GRK1, which are vital factors in the recovery phase of phototransduction after light stimuli. We report a case of Oguchi disease with novel heterozygous mutations in SAG. Case presentation A 7-year-old girl with a history of night blindness since childhood, was referred to our hospital. Ophthalmologic examinations included visual acuity, fundus examinations, fundus photography, spectral-domain optical coherence tomography, electroretinographic (ERG). Mutation screening of the SAG and GRK1 genes was performed. This patient exhibited typical clinical characteristics of Oguchi disease, including night blindness, golden fundus with the Mizuo–Nakamura phenomenon, packed structure of the parafovea in optical coherence tomography and reduced a-waves and b-waves in scotopic 3.0 ERG. Genetic testing revealed a heterozygous change in nucleotide c.72_75+15delATCGGTGAGTGGTGCACAA in exon 2 of the SAG gene in this patient, her unaffected mother and younger brother. A splicing alteration of nucleotide c.376-2A>C was identified in exon 6 of the SAG gene with heterozygous status in this patient and her unaffected father. Conclusions Compound heterozygosity of a nonsense p.S25X mutation in exon 2 and a splicing alteration in exon 6 of the SAG gene is the cause of this patient with Oguchi type 1 disease in China.
Collapse
Affiliation(s)
- Zhen Deng
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Fangli Fan
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China.
| | - Danyan Tang
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Yifeng Wu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Yujie Shu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| | - Kunlin Wu
- Eye Center, First People's Hospital of Linping District, No.369 Yingbin Rd, Hangzhou, 311100, China
| |
Collapse
|
4
|
Ilhan C, Citirik M, Teke MY, Dulger SC. Clinical Findings in Four Siblings with Genetically Proven Oguchi Disease. J Curr Ophthalmol 2021; 32:390-394. [PMID: 33553842 PMCID: PMC7861099 DOI: 10.4103/joco.joco_155_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose To assess the clinical findings in normal daylight status and 3 h of dark-adapted status in family members with Oguchi disease (OD). Methods Four siblings with OD and their parents were included in this case series. The presence of disease was confirmed with genetic analysis and comprehensive clinical evaluation. Corrected distant visual acuity (CDVA), automated visual field analysis (VFA), optical coherence tomography (OCT), OCT angiography (OCTA), colored fundus photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA), electroretinography (ERG), and dark adaptation test (DAT) results were obtained in normal daylight status. On the next day, after 3 h of dark adaptation, the patients were re-evaluated. The findings obtained in normal daylight status and 3 h dark-adapted status were compared. Results The mean age of the four sibling subjects was 15.25 ± 2.2 years. All subjects had 20/20 CDVA and normal VFA. There was no abnormality in OCT and OCTA in normal daylight status and 3 h of dark-adapted status. Colored fundus photographs showed characteristic golden-yellow colored reflex in the mid-peripheral retina in normal daylight status, and discoloration in 3 h of dark-adapted status. In FAF and FFA, no abnormal pattern was observed in normal daylight status and 3 h of dark-adapted status. ERG showed rod function alterations and normal cone function. DAT showed delayed rod adaptation and normal cone adaptation. ERG and DAT findings remained unchanged after 3 h of dark adaptation. Conclusion After 3 h of dark adaptation, golden-yellow fundus color returns to normal in patients with OD; however, rod function alterations and normal cone function in ERG, as well as delayed rod adaptation and normal cone adaptation in DAT remain unchanged.
Collapse
Affiliation(s)
- Cagri Ilhan
- Department of Ophthalmology, Hatay State Hospital, Hatay, Turkey
| | - Mehmet Citirik
- Department of Ophthalmology, Ankara Ulucanlar Eye Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Yasin Teke
- Department of Ophthalmology, Ankara Ulucanlar Eye Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Selda Celik Dulger
- Department of Ophthalmology, Ankara Ulucanlar Eye Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
5
|
Leinonen H, Choi EH, Gardella A, Kefalov VJ, Palczewski K. A Mixture of U.S. Food and Drug Administration-Approved Monoaminergic Drugs Protects the Retina From Light Damage in Diverse Models of Night Blindness. Invest Ophthalmol Vis Sci 2019; 60:1442-1453. [PMID: 30947334 PMCID: PMC6736410 DOI: 10.1167/iovs.19-26560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The purpose of this study was to test the extent of light damage in different models of night blindness and apply these paradigms in testing the therapeutic efficacy of combination therapy by drugs acting on the Gi, Gs, and Gq protein-coupled receptors. Methods Acute bright light exposure was used to test susceptibility to light damage in mice lacking the following crucial phototransduction proteins: rod transducin (GNAT1), cone transducin (GNAT2), visual arrestin 1 (ARR1), and rhodopsin kinase 1 (GRK1). Mice were intraperitoneally injected with either vehicle or drug combination consisting of metoprolol (β1-receptor antagonist), bromocriptine (dopamine family-2 receptor agonist) and tamsulosin (α1-receptor antagonist) before bright light exposure. Light damage was primarily assessed with optical coherence tomography and inspection of cone population in retinal whole mounts. Retinal inflammation was assessed in a subset of experiments using autofluorescence imaging by scanning laser ophthalmoscopy and by postmortem inspection of microglia and astrocyte activity. Results The Gnat1−/− mice showed slightly increased susceptibility to rod light damage, whereas the Gnat2−/− mice were very resistant. The Arr1−/− and Grk1−/− mice were sensitive for both rod and cone light damage and showed robust retinal inflammation 7 days after bright light exposure. Pretreatment with metoprolol + bromocriptine + tamsulosin rescued the retina in all genetic backgrounds, starting at doses of 0.2 mg/kg metoprolol, 0.02 mg/kg bromocriptine, and 0.01 mg/kg tamsulosin in the Gnat1−/− mice. The therapeutic drug doses increased in parallel with light-damage severity. Conclusions Our results suggest that congenital stationary night blindness and Oguchi disease patients can be at an elevated risk of the toxic effects of bright light. Furthermore, systems pharmacology drug regimens that stimulate Gi signaling and attenuate Gs and Gq signaling present a promising disease-modifying therapy for photoreceptor degenerative diseases.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Elliot H Choi
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Anthony Gardella
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
6
|
Nishiguchi KM, Ikeda Y, Fujita K, Kunikata H, Akiho M, Hashimoto K, Hosono K, Kurata K, Koyanagi Y, Akiyama M, Suzuki T, Kawasaki R, Wada Y, Hotta Y, Sonoda KH, Murakami A, Nakazawa M, Nakazawa T, Abe T. Phenotypic Features of Oguchi Disease and Retinitis Pigmentosa in Patients with S-Antigen Mutations: A Long-Term Follow-up Study. Ophthalmology 2019; 126:1557-1566. [PMID: 31257036 DOI: 10.1016/j.ophtha.2019.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To present phenotypic features of 22 patients with S-antigen (SAG) mutations. DESIGN Retrospective cohort study. PARTICIPANTS Twenty-one Japanese patients from 16 families with a homozygous c.924delA mutation and 1 patient with a homozygous c.636delT mutation in the SAG gene. METHODS Clinical records on symptoms; best-corrected visual acuity; and Goldmann perimetry, fundus photography, fundus autofluorescence (FAF), OCT, and electroretinography results were reviewed. MAIN OUTCOME MEASURES Best-corrected visual acuity, Goldmann perimetry results, imaging findings, and electroretinography results. RESULTS Ten patients had Oguchi disease and 12 had retinitis pigmentosa (RP) with mean follow-up periods of 13.8 and 10.2 years, respectively. Retinitis pigmentosa patients were older (mean age, 56.0 years) than those with Oguchi disease (mean age, 22.1 years; P < 0.001) at the initial visit. Night blindness noted in childhood was the most common initial symptom for both Oguchi disease (80.0%) and RP (91.7%) patients. Best-corrected visual acuity in the logarithm of the minimum angle of resolution (logMAR) was well preserved in Oguchi disease patients (mean, 0.02 logMAR in both eyes) but reduced in most RP patients (mean, 1.32 logMAR [right eye] and 1.35 logMAR [left eye]). Similarly, the visual field in the retinal area was preserved in Oguchi disease patients (mean, 677 mm2 right eye and 667 mm2 left eye) and reduced in RP patients (mean, 369 mm2 right eye and 294 mm2 left eye). Fundus images revealed a characteristic golden sheen with no retinal degeneration in Oguchi disease patients, excluding 2 with macular degeneration detected by FAF, OCT, or both and 1 with mild retinal degeneration confirmed by OCT and fluorescein angiography. Pigmentary retinal degeneration most evident posteriorly was observed in RP patients, accompanied by a characteristic golden sheen in 12 of 14 patients undergoing ultra-widefield fundus imaging. OCT showed disrupted macular structure, and FAF revealed variable hypofluorescence. Electroretinography identified absent rod responses in both diseases, along with relative preservation of cone responses in Oguchi disease patients. Three patients showed progressive loss of the golden sheen based on fundus images, including 1 who demonstrated RP 26 years after the initial diagnosis of Oguchi disease. CONCLUSIONS Retinitis pigmentosa with SAG mutations often shows a characteristic golden sheen surrounding posterior pigmentary retinal degeneration. Oguchi disease can show progressive degeneration in adulthood, rarely resulting in RP.
Collapse
Affiliation(s)
- Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Fujita
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Akiho
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ryo Kawasaki
- Department of Ophthalmology, Yamagata University School of Medicine, Yamagata, Japan
| | | | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mitsuru Nakazawa
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Mucciolo DP, Sodi A, Murro V, Passerini I, Palchetti S, Pelo E, Virgili G, Rizzo S. A novel GRK1 mutation in an Italian patient with Oguchi disease. Ophthalmic Genet 2017; 39:137-138. [PMID: 28511019 DOI: 10.1080/13816810.2017.1323341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dario Pasquale Mucciolo
- a Department of Translational Surgery and Medicine, Eye Clinic , University of Florence , Florence , Italy
| | - Andrea Sodi
- a Department of Translational Surgery and Medicine, Eye Clinic , University of Florence , Florence , Italy
| | - Vittoria Murro
- a Department of Translational Surgery and Medicine, Eye Clinic , University of Florence , Florence , Italy
| | - Ilaria Passerini
- b Department of Genetic Diagnosis , Careggi Teaching Hospital , Florence , Italy
| | - Simona Palchetti
- b Department of Genetic Diagnosis , Careggi Teaching Hospital , Florence , Italy
| | - Elisabetta Pelo
- b Department of Genetic Diagnosis , Careggi Teaching Hospital , Florence , Italy
| | - Gianni Virgili
- a Department of Translational Surgery and Medicine, Eye Clinic , University of Florence , Florence , Italy
| | - Stanislao Rizzo
- a Department of Translational Surgery and Medicine, Eye Clinic , University of Florence , Florence , Italy
| |
Collapse
|
8
|
Dammalli M, Murthy KR, Pinto SM, Murthy KB, Nirujogi RS, Madugundu AK, Dey G, Nair B, Gowda H, Keshava Prasad TS. Toward Postgenomics Ophthalmology: A Proteomic Map of the Human Choroid–Retinal Pigment Epithelium Tissue. ACTA ACUST UNITED AC 2017; 21:114-122. [DOI: 10.1089/omi.2016.0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Krishna R. Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
- Vittala International Institute of Ophthalmology, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | | | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Manipal University, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
- NIMHANS-IOB Bioinformatics and Proteomics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
9
|
Congenital stationary night blindness: An analysis and update of genotype–phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 2015; 45:58-110. [DOI: 10.1016/j.preteyeres.2014.09.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
|