1
|
Contribution of objectively measured grating acuity by sweep visually evoked potentials to the diagnosis of unexplained visual loss. Graefes Arch Clin Exp Ophthalmol 2022; 260:1687-1699. [DOI: 10.1007/s00417-021-05385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
|
2
|
Heinrich SP, Strübin I, Bach M. VEP-based acuity estimation: unaffected by translucency of contralateral occlusion. Doc Ophthalmol 2021; 143:249-257. [PMID: 33977361 PMCID: PMC8553676 DOI: 10.1007/s10633-021-09840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/29/2021] [Indexed: 12/02/2022]
Abstract
Purpose Visual evoked potential (VEP) recordings for objective visual acuity estimates are typically obtained monocularly with the contralateral eye occluded. Psychophysical studies suggest that the translucency of the occluder has only a minimal effect on the outcome of an acuity test. However, there is literature evidence for the VEP being susceptible to the type of occlusion. The present study assessed whether this has an impact on VEP-based estimates of visual acuity. Methods We obtained VEP-based acuity estimates with opaque, non-translucent occlusion of the contralateral eye, and with translucent occlusion that lets most of the light pass while abolishing the perception of any stimulus structure. The tested eye was measured with normal and artificially degraded vision, resulting in a total of 4 experimental conditions. Two different algorithms, a stepwise heuristic and a machine learning approach, were used to derive acuity from the VEP tuning curve. Results With normal vision, translucent occlusion resulted in slight, yet statistically significant better acuity estimates when analyzed with the heuristic algorithm (p = 0.014). The effect was small (mean ΔlogMAR = 0.06), not present in some participants, and without practical relevance. It was absent with the machine learning approach. With degraded vision, the difference was tiny and not statistically significant. Conclusion The type of occlusion for the contralateral eye does not substantially affect the outcome of VEP-based acuity estimation.
Collapse
Affiliation(s)
- Sven P Heinrich
- Eye Center, University of Freiburg Medical Center, Killianstr. 5, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Isabell Strübin
- Eye Center, University of Freiburg Medical Center, Killianstr. 5, 79106, Freiburg, Germany
| | - Michael Bach
- Eye Center, University of Freiburg Medical Center, Killianstr. 5, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Georges C, Guillaume M, Schiltz C. A robust electrophysiological marker of spontaneous numerical discrimination. Sci Rep 2020; 10:18376. [PMID: 33110202 PMCID: PMC7591903 DOI: 10.1038/s41598-020-75307-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023] Open
Abstract
Humans have a Number Sense that enables them to represent and manipulate numerical quantities. Behavioral data suggest that the acuity of numerical discrimination is predictively associated with math ability-especially in children-but some authors argued that its assessment is problematic. In the present study, we used frequency-tagged electroencephalography to objectively measure spontaneous numerical discrimination during passive viewing of dot or picture arrays in healthy adults. During 1-min sequences, we introduced periodic numerosity changes and we progressively increased the magnitude of such changes every ten seconds. We found significant brain synchronization to the periodic numerosity changes from the 1.2 ratio over medial occipital regions, and amplitude strength increased with the numerical ratio. Brain responses were reliable across both stimulus formats. Interestingly, electrophysiological responses also mirrored performances on a number comparison task and seemed to be linked to math fluency. In sum, we present a neural marker of numerical acuity that is passively evaluated in short sequences, independent of stimulus format and that reflects behavioural performances on explicit number comparison tasks.
Collapse
Affiliation(s)
- Carrie Georges
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg.
| | - Mathieu Guillaume
- Center for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50 (CP 191), 1050, Brussels, Belgium
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Elgohary AA, Heinrich SP. Minor effect of inaccurate fixation on VEP-based acuity estimates. Doc Ophthalmol 2020; 142:275-282. [PMID: 33037950 PMCID: PMC7943488 DOI: 10.1007/s10633-020-09796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE VEP-based estimation of visual acuity may be used in cases of suspected malingering to objectify subjective complaints. In such an application, a lack of cooperation needs to be expected. The same may apply to young children with suspected functional impairments. In the present study, we assessed how inaccurate fixation affects the acuity estimates obtained with a VEP technique. METHODS VEP-based acuity estimates were obtained by stimulating with a series of different check sizes using a 'stepwise sweep' protocol. Sixteen participants were tested with normal and degraded vision under five different fixation conditions (central fixation and eccentric fixation at top, bottom, right, and left edge of the stimulus area). RESULTS The majority of individual acuity estimates with eccentric fixation differed by less than 0.1 logMAR from central fixation, and almost all estimates differed by less than 0.3 logMAR. Median estimates with eccentric fixation differed only slightly (up to 0.08 logMAR) and, except for top fixation with normal vision, non-significantly. However, data quality was lower with eccentric fixation, which increased the probability that no acuity estimate could be derived from the recording. CONCLUSION VEP-based acuity estimates are relatively insensitive to eccentric fixation. Unnoticed deviations from central fixation in routine applications will probably be smaller than in the present study and will have even less impact on the outcome.
Collapse
Affiliation(s)
- Amal A Elgohary
- Department of Vision Science, Research Institute of Ophthalmology, Giza, Cairo, Egypt
| | - Sven P Heinrich
- Eye Center, Medical Center, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Assessment of Human Visual Acuity Using Visual Evoked Potential: A Review. SENSORS 2020; 20:s20195542. [PMID: 32998208 PMCID: PMC7582995 DOI: 10.3390/s20195542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023]
Abstract
Visual evoked potential (VEP) has been used as an alternative method to assess visual acuity objectively, especially in non-verbal infants and adults with low intellectual abilities or malingering. By sweeping the spatial frequency of visual stimuli and recording the corresponding VEP, VEP acuity can be defined by analyzing electroencephalography (EEG) signals. This paper presents a review on the VEP-based visual acuity assessment technique, including a brief overview of the technique, the effects of the parameters of visual stimuli, and signal acquisition and analysis of the VEP acuity test, and a summary of the current clinical applications of the technique. Finally, we discuss the current problems in this research domain and potential future work, which may enable this technique to be used more widely and quickly, deepening the VEP and even electrophysiology research on the detection and diagnosis of visual function.
Collapse
|
6
|
Hamilton R, Bach M, Heinrich SP, Hoffmann MB, Odom JV, McCulloch DL, Thompson DA. VEP estimation of visual acuity: a systematic review. Doc Ophthalmol 2020; 142:25-74. [PMID: 32488810 PMCID: PMC7907051 DOI: 10.1007/s10633-020-09770-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 01/23/2023]
Abstract
Purpose Visual evoked potentials (VEPs) can be used to measure visual resolution via a spatial frequency (SF) limit as an objective estimate of visual acuity. The aim of this systematic review is to collate descriptions of the VEP SF limit in humans, healthy and disordered, and to assess how accurately and precisely VEP SF limits reflect visual acuity. Methods The protocol methodology followed the PRISMA statement. Multiple databases were searched using “VEP” and “acuity” and associated terms, plus hand search: titles, abstracts or full text were reviewed for eligibility. Data extracted included VEP SF limits, stimulus protocols, VEP recording and analysis techniques and correspondence with behavioural acuity for normally sighted healthy adults, typically developing infants and children, healthy adults with artificially degraded vision and patients with ophthalmic or neurological conditions. Results A total of 155 studies are included. Commonly used stimulus, recording and analysis techniques are summarised. Average healthy adult VEP SF limits vary from 15 to 40 cpd, depend on stimulus, recording and analysis techniques and are often, but not always, poorer than behavioural acuity measured either psychophysically with an identical stimulus or with a clinical acuity test. The difference between VEP SF limit and behavioural acuity is variable and strongly dependent on the VEP stimulus and choice of acuity test. VEP SF limits mature rapidly, from 1.5 to 9 cpd by the end of the first month of life to 12–20 cpd by 8–12 months, with slower improvement to 20–40 cpd by 3–5 years. VEP SF limits are much better than behavioural thresholds in the youngest, typically developing infants. This difference lessens with age and reaches equivalence between 1 and 2 years; from around 3–5 years, behavioural acuity is better than the VEP SF limit, as for adults. Healthy, artificially blurred adults had slightly better behavioural acuity than VEP SF limits across a wide range of acuities, while adults with heterogeneous ophthalmic or neurological pathologies causing reduced acuity showed a much wider and less consistent relationship. For refractive error, ocular media opacity or pathology primarily affecting the retina, VEP SF limits and behavioural acuity had a fairly consistent relationship across a wide range of acuity. This relationship was much less consistent or close for primarily macular, optic nerve or neurological conditions such as amblyopia. VEP SF limits were almost always normal in patients with non-organic visual acuity loss. Conclusions The VEP SF limit has great utility as an objective acuity estimator, especially in pre-verbal children or patients of any age with motor or learning impairments which prevent reliable measurement of behavioural acuity. Its diagnostic power depends heavily on adequate, age-stratified, reference data, age-stratified empirical calibration with behavioural acuity, and interpretation in the light of other electrophysiological and clinical findings. Future developments could encompass faster, more objective and robust techniques such as real-time, adaptive control. Registration International prospective register of systematic reviews PROSPERO (https://www.crd.york.ac.uk/PROSPERO/), registration number CRD42018085666.
Collapse
Affiliation(s)
- Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow and Clyde, Glasgow, UK. .,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michael Bach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - J Vernon Odom
- Departments of Ophthalmology and Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Daphne L McCulloch
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Dorothy A Thompson
- The Department of Clinical and Academic Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
7
|
Ridder WH. A comparison of contrast sensitivity and sweep visual evoked potential (sVEP) acuity estimates in normal humans. Doc Ophthalmol 2019; 139:207-219. [PMID: 31414313 DOI: 10.1007/s10633-019-09712-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Several previous studies have demonstrated that for normal adult subjects the optotype acuity measured with charts is better than the acuity determined with the sweep visual evoked potential (sVEP) using gratings or checks. However, there is no difference in psychophysical measures of acuity with optotype or grating charts. Thus, it is unclear whether the acuity discrepancy between optotype charts and the sVEP result from the stimulus design or other methodological differences. The purpose of this experiment is to determine the relationship between acuities extrapolated from a contrast sensitivity function (CSF) that uses optotypes and the sVEP. METHODS Normal subjects (N = 10) with acuity of 0.00 logMAR or better (ETDRS chart) were recruited for this study. Two commercially available systems were used to measure CSFs [i.e., the Beethoven System (Ryklin Software, NY) and the qCSF system (Adaptive Sensory Tech, CA)]. The stimuli for the Beethoven were sine wave gratings (0.75-18.50 cpd), and thresholds were determined with a 2-alternative forced choice (2-AFC) procedure combined with a staircase. The stimuli for the qCSF system were spatially filtered letters (10 possible letters, 10-AFC) with the letter sizes and contrasts determined by a Bayesian adaptive procedure. Visual acuity was determined by fitting the data with a double exponential equation and extrapolating the fit to a contrast sensitivity of one. The sVEP was obtained with the PowerDiva (Digital Instrumentation for Visual Assessment, version 3.5, CA). The stimuli were sine wave gratings (80% contrast, 3-36 cpd) counterphased at 7.5 Hz. The final acuity was the average of two estimates each derived from the average of 10 sweeps. RESULTS The average logMAR chart (acuity converted to cpd), sVEP, Beethoven, and qCSF acuities were 36.6 ± 4.62 cpd (mean ± SD), 31.2 ± 4.59 cpd, 27.3 ± 7.38 cpd, and 27.6 ± 6.36 cpd, respectively. The logMAR chart acuity was significantly different from the other acuity estimates (all p values < 0.05). The sVEP, Beethoven, and qCSF acuities were not different from one another (all p values > 0.05). The Beethoven and the qCSF acuities had a good intraclass correlation coefficient (ICC = 0.85). CONCLUSIONS Similar to previous publications, the sVEP acuity estimate was less than the optotype chart acuity. The acuity determined with the sVEP and the CSFs with letter and grating stimuli were not statistically different, suggesting that the difference in acuity with the sVEP and optotype charts does not result from stimulus differences. Other methodological differences must account for the discrepancy in sVEP and optotype chart acuity.
Collapse
Affiliation(s)
- William H Ridder
- Marshall B. Ketchum University, Southern California College of Optometry, 2575 Yorba Linda Blvd., Fullerton, CA, 92831, USA.
| |
Collapse
|
8
|
Staubli U, Rangel-Diaz N, Alcantara M, Li YX, Yang JY, Zhang KM, Foster AC. Restoration of visual performance by d-serine in models of inner and outer retinal dysfunction assessed using sweep VEP measurements in the conscious rat and rabbit. Vision Res 2016; 127:35-48. [PMID: 27461280 DOI: 10.1016/j.visres.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The NMDA subtype of glutamate receptor and its co-agonist d-serine play a key role in synaptic function in the central nervous system (CNS), including visual cortex and retina. In retinal diseases such as glaucoma and macular degeneration, a loss of vision arises from malfunction of retinal cells, resulting in a glutamate hypofunctional state along the visual pathway in the affected parts of the visual field. An effective strategy to remedy this loss of function might be to increase extracellular levels of d-serine and thereby boost synaptic NMDA receptor-mediated visual transmission and/or plasticity to compensate for the impairment. We tested this idea in brain slices of visual cortex exhibiting long-term potentiation, and in rodent models of visual dysfunction caused by retinal insults at a time when the injury had stabilized to look for neuroenhancement effects. An essential aspect of the in vivo studies involved adapting sweep VEP technology to conscious rats and rabbits and combining it with intracortical recording while the animals were actively attending to visual information. Using this technology allowed us to establish complete contrast sensitivity function curves. We found that systemic d-serine dose-dependently rescued the contrast sensitivity impairment in rats with blue light-induced visual dysfunction. In rabbits with inner retinal dysfunction, both systemic and intravitreal routes of d-serine provided a rescue of visual function. In sum, we show that co-agonist stimulation of the NMDA receptor via administration of exogenous d-serine might be an effective therapeutic strategy to enhance visual performance and compensate for the loss of vision resulting from retinal disease.
Collapse
Affiliation(s)
- Ursula Staubli
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Natalie Rangel-Diaz
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Miguel Alcantara
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yong-Xin Li
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Jia-Ying Yang
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Kai-Ming Zhang
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Alan C Foster
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|