1
|
Mosavi-Hecht RM, Yang P, Heyer B, Rosenberg CR, White E, Berry EG, Duvoisin RM, Morgans CW. Case report: Longitudinal evaluation and treatment of a melanoma-associated retinopathy patient. Front Med (Lausanne) 2024; 11:1445180. [PMID: 39318594 PMCID: PMC11420136 DOI: 10.3389/fmed.2024.1445180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Melanoma-associated retinopathy (MAR) is a paraneoplastic syndrome associated with cutaneous metastatic melanoma in which patients develop vision deficits that include reduced night vision, poor contrast sensitivity, and photopsia. MAR is caused by autoantibodies targeting TRPM1, an ion channel found in melanocytes and retinal ON-bipolar cells (ON-BCs). The visual symptoms arise when TRPM1 autoantibodies enter ON-BCs and block the function of TRPM1, thus detection of TRPM1 autoantibodies in patient serum is a key criterion in diagnosing MAR. Electroretinograms are used to measure the impact of TRPM1 autoantibodies on ON-BC function and represent another important diagnostic tool for MAR. To date, MAR case reports have included one or both diagnostic components, but only for a single time point in the course of a patient's disease. Here, we report a case of MAR supported by longitudinal analysis of serum autoantibody detection, visual function, ocular inflammation, vascular integrity, and response to slow-release intraocular corticosteroids. Integrating these data with the patient's oncological and ophthalmological records reveals novel insights regarding MAR pathogenesis, progression, and treatment, which may inform new research and expand our collective understanding of the disease. In brief, we find TRPM1 autoantibodies can disrupt vision even when serum levels are barely detectable by western blot and immunohistochemistry; intraocular dexamethasone treatment alleviates MAR visual symptoms despite high levels of circulating TRPM1 autoantibodies, implicating antibody access to the retina as a key factor in MAR pathogenesis. Elevated inflammatory cytokine levels in the patient's eyes may be responsible for the observed damage to the blood-retinal barrier and subsequent entry of autoantibodies into the retina.
Collapse
Affiliation(s)
- Ryan M. Mosavi-Hecht
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Barrett Heyer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | | | - Elizabeth White
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Elizabeth G. Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Catherine W. Morgans
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
2
|
Casselman P, Jacob J, Schauwvlieghe PP. Relation between ocular paraneoplastic syndromes and Immune Checkpoint Inhibitors (ICI): review of literature. J Ophthalmic Inflamm Infect 2023; 13:16. [PMID: 37022562 PMCID: PMC10079794 DOI: 10.1186/s12348-023-00338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
PURPOSE To describe different ocular paraneoplastic syndromes in patients treated with Immune Checkpoint Inhibitors (ICI), its relation with different types of ICI and different types of tumors, and its implications for treatment. METHODS A comprehensive review of the literature was performed. RESULTS Patients treated with ICI can present with different ocular paraneoplastic syndromes, such as Carcinoma Associated Retinopathy (CAR), Melanoma Associated Retinopathy (MAR) and paraneoplastic Acute Exudative Polymorphous Vitelliform Maculopathy (pAEPVM). In literature, the different types of paraneoplastic retinopathy are mostly related to different types of primary tumors, with MAR and pAEPVM seen in melanoma, and CAR in carcinoma. Visual prognosis is limited in MAR and CAR. CONCLUSION Paraneoplastic disorders result from an antitumor immune response against a shared autoantigen between the tumor and ocular tissue. ICI enhance the antitumor immune response, which can lead to increased cross-reaction against ocular structures and unmasking of a predisposed paraneoplastic syndrome. Different types of primary tumors are related to different cross-reactive antibodies. Therefore, the different types of paraneoplastic syndromes are related to different types of primary tumors and are probably unrelated to the type of ICI. ICI-related paraneoplastic syndromes often lead to an ethical dilemma. Continuation of ICI treatment can lead to irreversible visual loss in MAR and CAR. In these cases overall survival must be weighed against quality of life. In pAEPVM however, the vitelliform lesions can disappear with tumor control, which may involve continuation of ICI.
Collapse
Affiliation(s)
- Pauline Casselman
- Department of Ophthalmology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Julie Jacob
- Department of Ophthalmology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | |
Collapse
|
3
|
Martens A, Schauwvlieghe PP, Madoe A, Casteels I, Aspeslagh S. Ocular adverse events associated with immune checkpoint inhibitors, a scoping review. J Ophthalmic Inflamm Infect 2023; 13:5. [PMID: 36811715 PMCID: PMC9947214 DOI: 10.1186/s12348-022-00321-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have become an important part of the treatment of multiple cancers, especially for advanced melanoma and non-small cell lung cancer. Some tumors are capable of escaping immunosurveillance by stimulating checkpoints on T-cells. ICIs prevent activation of these checkpoints and thereby stimulate the immune system and indirectly the anti-tumor response. However, the use of ICIs is associated with various adverse events. Ocular side effects are rare but may have a major impact on the quality of life of the patient. METHODS A comprehensive literature search of the medical databases Web of Science, Embase and PubMed was performed. Articles that provided a comprehensive description of a case report containing 1) cancer patient(s) treated with (a combination of) immune checkpoint inhibitors, and 2) assessed occurrence of ocular adverse events, were included. A total of 290 case reports were included. RESULTS Melanoma (n = 179; 61.7%) and lung cancer (n = 56; 19.3%) were the most frequent reported malignancies. The primary used ICIs were nivolumab (n = 123; 42.5%) and ipilimumab (n = 116; 40.0%). Uveitis was most the common adverse event (n = 134; 46.2%) and mainly related to melanoma. Neuro-ophthalmic disorders, including myasthenia gravis and cranial nerve disorders, were the second most common adverse events (n = 71; 24.5%), mainly related to lung cancer. Adverse events affecting the orbit and the cornea were reported in 33 (11.4%) and 30 cases (10.3%) respectively. Adverse events concerning the retina were reported in 26 cases (9.0%). CONCLUSION The aim of this paper is to provide an overview of all reported ocular adverse events related to the use of ICIs. The insights retrieved from this review might contribute to a better understanding of the underlying mechanisms of these ocular adverse events. Particularly, the difference between actual immune-related adverse events and paraneoplastic syndromes might be relevant. These findings might be of great value in establishing guidelines on how to manage ocular adverse events related to ICIs.
Collapse
Affiliation(s)
- A Martens
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium.
| | - P P Schauwvlieghe
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - A Madoe
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - I Casteels
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - S Aspeslagh
- Department of Medical Oncology, University Hospital Brussels, Brussels, Belgium
| |
Collapse
|
4
|
Bae SH, Hong HK, Lee JY, Kim MS, Lee CS, Sagong M, Kim SY, Oh BL, Yoon YH, Shin JP, Jo YJ, Joo K, Park SJ, Park KH, Woo SJ. Plasma Antiretinal Autoantibody Profiling and Diagnostic Efficacy in Patients With Autoimmune Retinopathy. Am J Ophthalmol 2023; 245:145-154. [PMID: 35853491 DOI: 10.1016/j.ajo.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate plasma antiretinal autoantibody (ARA) profiling and diagnostic efficacy for autoimmune retinopathy (AIR). DESIGN A multicenter, diagnostic evaluation study. METHODS Forty-nine patients with a clinical diagnosis of AIR, disease controls including 20 patients with retinitis pigmentosa (RP), and 30 normal controls were included. Plasma samples from patients were analyzed for the presence of 6 ARAs, including recoverin, α-enolase, carbonic anhydrase II, heat shock protein 60, aldolase C, and cone-rod homeobox/cone-rod retinal dystrophy 2 using western blotting. RESULTS Autoantibody detection rates against cone-rod homeobox/cone-rod retinal dystrophy 2, heat shock protein 60, and aldolase C in AIR were 67.3%, 40.8%, and 42.9%, respectively, which were higher than those in RP and normal controls (P < .001, P < .001, and P = .007, respectively), but recoverin, α-enolase, and carbonic anhydrase II were not different from other control groups (P = .117, P = .774, and P = .467, respectively). Among ARAs, antirecoverin antibody was the most specific, as it was found in 3 (6.1%) patients with AIR and none of the control groups. As the number of detected ARAs increased, the probability of AIR increased (odds ratio: 1.913; P < .001; 95% confidence interval: 1.456-2.785). The positive number of ARAs was significantly higher when photoreceptor disruption was observed on optical coherence tomography, or severe dysfunction was observed in electroretinography (P = .022 and P = .029, respectively). CONCLUSIONS The profiles of ARAs in the AIR group were different from those in the RP and normal controls. The higher number of positive ARAs suggests a higher possibility of AIR diagnosis. ARAs should be used as adjunct tools for the clinical diagnosis of AIR.
Collapse
Affiliation(s)
- Seok Hyun Bae
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.).
| | - Hye Kyoung Hong
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.)
| | - Jong Young Lee
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.)
| | - Min Seok Kim
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.)
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Severance Hospital, Seoul (C.S.L.)
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University College of Medicine, Yeungnam University Hospital
| | - Sook Young Kim
- Department of Ophthalmology, Daegu Catholic University School of Medicine (S.Y.K.), Daegu
| | - Baek-Lok Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital (B. L. O.)
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center (Y.H.Y.), Seoul
| | - Jae Pil Shin
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (J.P.S.)
| | - Young Joon Jo
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon (Y.J.J.), Korea
| | - Kwangsic Joo
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.)
| | - Sang Jun Park
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.)
| | - Kyu Hyung Park
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.); Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital (B. L. O.)
| | - Se Joon Woo
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (S.H.B., H.K.H., J.Y.L., M.S.K., K.J., S.J.P., K.H.P., S.J.W.).
| |
Collapse
|
5
|
Hung WC, Cheng HC, Wang AG. Melanoma-associated retinopathy with anti-TRPM1 autoantibodies showing concomitant Off-bipolar cell dysfunction. Doc Ophthalmol 2022; 145:263-270. [PMID: 36173494 DOI: 10.1007/s10633-022-09901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND To report the clinical features of a patient with melanoma-associated retinopathy (MAR) with anti-transient receptor potential cation channel, subfamily M, member 1 (TRPM1) autoantibodies showing concomitant Off-bipolar cell dysfunction. METHODS We evaluated a patient with a past history of scalp melanoma presented with sudden-onset shimmering photopsia in both eyes. MAR was confirmed with complete ophthalmic examinations, electronegative electroretinogram (ERG), and the presence of anti-TRPM1 autoantibodies by Western blot analysis. S-cone ERG and photopic On-Off ERG were studied in this patient as well. RESULTS The patient's best-corrected visual acuity was 6/30 in the right eye and 6/8.6 in the left eye. Fundus and OCT findings were unremarkable. Visual field test showed severe constriction in both eyes. His full-field ERG was electronegative. S-cone ERG recorded preservation of L/M-cone-mediated response and undetectable S-cone-mediated response. Photopic On-Off ERG disclosed attenuated On- and Off-response. Western blot analysis confirmed immunoreactivity of the patient's serum to a 30 kDa TRPM1 recombinant protein. Whole-body positron emission tomography scan detected lymph node metastases in the neck. CONCLUSIONS Anti-TRPM1 autoantibody-positive MAR varies greatly in its presentation and clinical course. We present a case of anti-TRPM1 autoantibody-positive MAR with atypical feature of Off-bipolar cell involvement. A complete electroretinographic study together with identification of the pathogenic antiretinal autoantibodies may help better understand and subclassify the disease in the future.
Collapse
Affiliation(s)
- Wei-Che Hung
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan
| | - Hui-Chen Cheng
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan.,Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan. .,Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Pourtavakoli A, Ghafouri-Fard S. Calcium signaling in neurodevelopment and pathophysiology of autism spectrum disorders. Mol Biol Rep 2022; 49:10811-10823. [PMID: 35857176 DOI: 10.1007/s11033-022-07775-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) covers a group of neurodevelopmental disorders with complex genetic background. Several genetic mutations, epigenetic alterations, copy number variations and single nucleotide polymorphisms have been reported that cause ASD or modify its phenotype. Among signaling pathways that influence pathogenesis of ASD, calcium signaling has a prominent effect. METHODS We searched PubMed and Google Scholar databases with key words "Calcium signaling" and "Autism spectrum disorder". CONCLUSION This type of signaling has essential roles in the cell physiology. Endoplasmic reticulum and mitochondria are the key organelles involved in this signaling. It is vastly accepted that organellar disorders intensely influence the central nervous system (CNS). Several lines of evidence indicate alterations in the function of calcium channels in polygenic disorders affecting CNS. In the current review, we describe the role of calcium signaling in normal function of CNS and pathophysiology of ASD.
Collapse
Affiliation(s)
- Ashkan Pourtavakoli
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sakti DH, Ali H, Korsakova M, Saakova N, Mustafic N, Fraser CL, Jamieson RV, Cornish EE, Grigg JR. Electronegative electroretinogram in the modern multimodal imaging era. Clin Exp Ophthalmol 2022; 50:429-440. [PMID: 35212129 PMCID: PMC9544723 DOI: 10.1111/ceo.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
Abstract
Background The electronegative electroretinogram (ERG) reflecting inner retinal dysfunction can assist as a diagnostic tool to determine the anatomical location in eye disease. The aim of this study is to determine the frequency and aetiology of electronegative ERG in a tertiary ophthalmology centre and to develop a clinical algorithm to assist patient management. Methods Retrospective review of ERGs performed at the Save Sight Institute from January 2011 to December 2020. ERGs were performed according to ISCEV standard. The b:a ratio was analysed in dark adapted (DA) 3.0 or 12.0 recordings. Patients with ratio of ≤1.0 were included. Results A total of 4421 patients had ERGs performed during study period, of which 139 patients (3.1%) had electronegative ERG. The electronegative ERG patients' median age at referral time was 37 (0.7–90.6) years. The causative aetiologies were photoreceptor dystrophy (48, 34.5%), Congenital Stationary Night Blindness (CSNB) (33, 23.7%), retinal ischemia (18, 12.9%), retinoschisis (15, 10.8%), paraneoplastic autoimmune retinopathy (PAIR) and nonPAIR (14, 10.1%), batten disease (4, 2.9%), and inflammatory retinopathy (4, 2.9%). There were three patients with an unclassified diagnosis. Thirty‐two patients (23%) had good vision and a normal fundus appearance. Eleven patients (7.9%) had good vision and normal results in all multimodal imaging. Conclusions The frequency of electronegative ERG in our referral centre was 3.1% with photoreceptor dystrophy as the main aetiology. A significant number of the cases had good vision with normal fundus or normal multimodal imaging. This further highlights the value of an ERG in this modern multimodal imaging era.
Collapse
Affiliation(s)
- Dhimas H. Sakti
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute Children's Medical Research Institute, The University of Sydney Sydney New South Wales Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing Universitas Gadjah Mada Yogyakarta Indonesia
| | - Haipha Ali
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Maria Korsakova
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nonna Saakova
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nina Mustafic
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Clare L. Fraser
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Sydney Eye Hospital Sydney New South Wales Australia
| | - Robyn V. Jamieson
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute Children's Medical Research Institute, The University of Sydney Sydney New South Wales Australia
- Specialty of Genetic Medicine, Faculty of Medicine and Health, Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Clinical Genetics, The Children's Hospital at Westmead Sydney Children's Hospital Network Sydney New South Wales Australia
| | - Elisa E. Cornish
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute Children's Medical Research Institute, The University of Sydney Sydney New South Wales Australia
- Sydney Eye Hospital Sydney New South Wales Australia
| | - John R. Grigg
- Visual electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute Children's Medical Research Institute, The University of Sydney Sydney New South Wales Australia
- Sydney Eye Hospital Sydney New South Wales Australia
| |
Collapse
|
8
|
Gyoten D, Ueno S, Okado S, Chaya T, Yasuda S, Morimoto T, Kondo M, Kimura K, Hayashi T, Leroy BP, Woo SJ, Mukai R, Joo K, Furukawa T. Broad locations of antigenic regions for anti-TRPM1 autoantibodies in paraneoplastic retinopathy with retinal ON bipolar cell dysfunction. Exp Eye Res 2021; 212:108770. [PMID: 34562437 DOI: 10.1016/j.exer.2021.108770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Cancer-associated retinal ON bipolar cell dysfunction (CARBD), which includes melanoma-associated retinopathy (MAR), has been reported to be caused by autoantibodies against the molecules expressed in ON bipolar cells, including TRPM1. The purpose of this study was to determine the antigenic regions of the autoantibodies against TRPM1 in the sera of CARBD patients, in whom we previously detected anti-TRPM1 autoantibodies. METHODS The antigenic regions against TRPM1 in the sera of eight CARBD patients were examined by Western blots using HEK293T cells transfected with the plasmids expressing FLAG-tagged TRPM1 fragments. The clinical course of these patients was also documented. RESULTS The clinical course differed among the patients. The electroretinograms (ERGs) and symptoms were improved in three patients, deteriorated in one patient, remained unchanged for a long time in one patient, and were not followable in three patients. Seven of the eight sera possessed multiple antigenic regions: two sera contained at least four antigen recognition regions, and three sera had at least three regions. The antigen regions were spread over the entire TRPM1 protein: five sera in the N-terminal intracellular domain, six sera in the transmembrane-containing region, and six sera in the C-terminal intracellular domain. No significant relationship was observed between the location of the antigen epitope and the patients' clinical course. CONCLUSIONS The antigenic regions of anti-TRPM1 autoantibodies in CARBD patients were present not only in the N-terminal intracellular domain, which was reported in an earlier report, but also in the transmembrane-containing region and in the C-terminal intracellular domain. In addition, the antigenic regions for TRPM1 were found to vary among the CARBD patients examined, and most of the sera had multiple antigenic regions.
Collapse
Affiliation(s)
- Daichi Gyoten
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - Satoshi Okado
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shunsuke Yasuda
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takeshi Morimoto
- Department of Advanced Visual Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Department of Ophthalmology, Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium; Division of Ophthalmology and CCMT, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ryo Mukai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|