1
|
Dominguez AA, Perz MT, Xu Y, Cedillo LG, Huang OD, McIntyre CA, Vudatha V, Trevino JG, Liu J, Wang P. Unveiling the Promise: Navigating Clinical Trials 1978-2024 for PDAC. Cancers (Basel) 2024; 16:3564. [PMID: 39518005 PMCID: PMC11544830 DOI: 10.3390/cancers16213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Despite many decades of research, pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to diagnose and treat effectively. Although there have been improvements in the 5-year overall survival rate, it is still very low at 12.5%. The limited efficacy of current therapies, even when PDAC is detected early, underscores the aggressive nature of the disease and the urgent need for more effective treatments. Clinical management of PDAC still relies heavily on a limited repertoire of therapeutic interventions, highlighting a significant gap between research efforts and available treatments. Over 4300 clinical trials have been or are currently investigating different treatment modalities and diagnostic strategies for PDAC, including targeted therapies, immunotherapies, and precision medicine approaches. These trials aim to develop more effective treatments and improve early detection methods through advanced imaging techniques and blood-based biomarkers. This review seeks to categorize and analyze PDAC-related clinical trials across various dimensions to understand why so few chemotherapeutic options are available to patients despite the numerous trials being conducted. This review aims to provide a comprehensive and nuanced understanding of the landscape of PDAC-related clinical trials, with the overarching goal of identifying opportunities to accelerate progress in drug development and improve patient outcomes in the fight against this devastating disease.
Collapse
Affiliation(s)
- Angel A. Dominguez
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Matthew T. Perz
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Yi Xu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Leonor G. Cedillo
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Orry D. Huang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Caitlin A. McIntyre
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jun Liu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Pei Wang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| |
Collapse
|
2
|
Chow Z, Johnson J, Chauhan A, Jeong JC, Castle JT, Izumi T, Weiss H, Townsend CM, Schrader J, Anthony L, Yang ES, Evers BM, Rychahou P. Inhibition of ribonucleotide reductase subunit M2 enhances the radiosensitivity of metastatic pancreatic neuroendocrine tumor. Cancer Lett 2024; 596:216993. [PMID: 38801884 PMCID: PMC11299177 DOI: 10.1016/j.canlet.2024.216993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.
Collapse
Affiliation(s)
- Zeta Chow
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Aman Chauhan
- Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jong Cheol Jeong
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Jennifer T Castle
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Tadahide Izumi
- Markey Cancer Center, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Heidi Weiss
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Cancer Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Courtney M Townsend
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lowell Anthony
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | - Eddy S Yang
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Piotr Rychahou
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Corrales-Guerrero S, Cui T, Castro-Aceituno V, Yang L, Nair S, Feng H, Venere M, Yoon S, DeWees T, Shen C, Williams TM. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1. Cancer Lett 2023; 570:216308. [PMID: 37482342 DOI: 10.1016/j.canlet.2023.216308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor. Radioresistance largely contributes to poor clinical outcomes in GBM patients. We targeted ribonucleotide reductase subunit 2 (RRM2) with triapine to radiosensitize GBM. We found RRM2 is associated with increasing tumor grade, is overexpressed in GBM over lower grade gliomas and normal tissue, and is associated with worse survival. We found silencing or inhibition of RRM2 by siRNA or triapine sensitized GBM cells to ionizing radiation (IR) and delayed resolution of IR-induced γ-H2AX nuclear foci. In vivo, triapine and IR reduced tumor growth and increased mouse survival. Intriguingly, triapine led to RRM2 upregulation and CHK1 activation, suggesting a CHK1-dependent RRM2 upregulation following RRM2 inhibition. Consistently, silencing or inhibition of CHK1 with rabusertib abolished the triapine-induced RRM2 upregulation. Accordingly, combining rabusertib and triapine resulted in synthetic lethality in GBM cells. Collectively, our results suggest RRM2 is a promising therapeutic target for GBM, and targeting RRM2 with triapine sensitizes GBM cells to radiation and independently induces synthetic lethality of GBM cells with CHK1 inhibition. Our findings suggest combining triapine with radiation or rabusertib may improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Sergio Corrales-Guerrero
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | | - Linlin Yang
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sindhu Nair
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Haihua Feng
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Stephanie Yoon
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Todd DeWees
- Division of Biostatistics, City of Hope, Duarte, CA, USA
| | - Changxian Shen
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
4
|
Kumar A, Mishra R, Mazumder A, Mazumder R, Varshney S. Exploring Synthesis and Chemotherapeutic Potential of Thiosemicarbazide Analogs. Anticancer Agents Med Chem 2023; 23:60-75. [PMID: 35658880 DOI: 10.2174/1871520622666220603090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Researchers are continually finding new and more effective medications to battle the diseases. OBJECTIVE The objective of this study is to identify the emerging role of Thiosemicarbazide analogs for different types of cancer targets with a glance at different novel synthetic routes reported for their synthesis. METHODS A systematic literature review was conducted from various sources over the last 15 years with the inclusion of published research and review articles that involves the synthesis and use of thiosemicarbazide analogs for different targets of cancer. Data from the literature review for synthesis and anticancer potential for specific targets for cancer studies of thiosemicarbazide analogs are summarized in the paper. RESULTS There are several emerging studies for new synthetic routes of thiosemicarbazide derivatives with their role in various types of cancers. The main limitation is the lack of clinical trial of the key findings for the emergence of new anticancer medication with thiosemicarbazide moiety. CONCLUSION Emerging therapies exist for use of a limited number of medications for the treatment of cancer; results of the ongoing studies will provide more robust evidence in the future.
Collapse
Affiliation(s)
- Akhalesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Shruti Varshney
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| |
Collapse
|
5
|
Aly AA, Abdallah EM, Ahmed SA, Rabee MM, Abdelhafez ESMN. Metal complexes of thiosemicarbazones derived by 2-quinolones with Cu(I), Cu(II) and Ni(II); Identification by NMR, IR, ESI mass spectra and in silico approach as potential tools against SARS-CoV-2. J Mol Struct 2022; 1265:133480. [PMID: 35698532 PMCID: PMC9179108 DOI: 10.1016/j.molstruc.2022.133480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Substituted thiosemicarbazones derived by 2-quinolone were synthesized to investigate their complexation capability towards Cu(I), Cu(II) and Ni(II) salts. The structure of the complexes was established by ESI, IR and NMR spectra in addition to elemental analyses. Monodetate Cu(I) quinoloyl-substituted ligands were observed, whereas Ni(II) and Cu(II) formed bidentate-thiosemicarbazone derived by 2-quinolones. Subsequently, molecular docking was used to evaluate each analog's binding affinity as well as the inhibition constant (ki) to RdRp complex of SARS-CoV-2. Docking results supported the ability of the tested complexes that potentially inhibit the RdRp of SARSCov-2 show binding energy higher than their corresponding ligands. Additionally, ADMET prediction revealed that some compounds stratify to Lipinski's rule, indicating a good oral absorption, high bioavailability good permeability, and transport via biological membranes. Therefore, these metals-based complexes are suggested to be potentially good candidates as anti-covid agents.
Collapse
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Elham M Abdallah
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Salwa A Ahmed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mai M Rabee
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | |
Collapse
|
6
|
Mourad AA, Rizzk YW, Zaki I, Mohammed FZ, El Behery M. Synthesis and cytotoxicity screening of some synthesized hybrid nitrogen molecules as anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
9
|
Abstract
Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.
Collapse
|
10
|
In vitro evaluation of the metabolic enzymes and drug interaction potential of triapine. Cancer Chemother Pharmacol 2020; 86:633-640. [PMID: 32989483 DOI: 10.1007/s00280-020-04154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study. METHODS Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC-MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC-MS/MS monitoring of CYP specific metabolite formation. RESULTS Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity. CONCLUSION CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug-drug interactions.
Collapse
|
11
|
Ohui K, Stepanenko I, Besleaga I, Babak MV, Stafi R, Darvasiova D, Giester G, Pósa V, Enyedy EA, Vegh D, Rapta P, Ang WH, Popović-Bijelić A, Arion VB. Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells. Biomolecules 2020; 10:biom10091336. [PMID: 32961653 PMCID: PMC7564244 DOI: 10.3390/biom10091336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Thiosemicarbazones continue to attract the interest of researchers as potential anticancer drugs. For example, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, or triapine, is the most well-known representative of this class of compounds that has entered multiple phase I and II clinical trials. Two new triapine derivatives HL1 and HL2 were prepared by condensation reactions of 2-pyridinamidrazone and S-methylisothiosemicarbazidium chloride with 3-N-(tert-butyloxycarbonyl) amino-pyridine-2-carboxaldehyde, followed by a Boc-deprotection procedure. Subsequent reaction of HL1 and HL2 with CuCl2·2H2O in 1:1 molar ratio in methanol produced the complexes [CuII(HL1)Cl2]·H2O (1·H2O) and [CuII(HL2)Cl2] (2). The reaction of HL2 with Fe(NO3)3∙9H2O in 2:1 molar ratio in the presence of triethylamine afforded the complex [FeIII(L2)2]NO3∙0.75H2O (3∙0.75H2O), in which the isothiosemicarbazone acts as a tridentate monoanionic ligand. The crystal structures of HL1, HL2 and metal complexes 1 and 2 were determined by single crystal X-ray diffraction. The UV-Vis and EPR spectroelectrochemical measurements revealed that complexes 1 and 2 underwent irreversible reduction of Cu(II) with subsequent ligand release, while 3 showed an almost reversible electrochemical reduction in dimethyl sulfoxide (DMSO). Aqueous solution behaviour of HL1 and 1, as well as of HL2 and its complex 2, was monitored as well. Complexes 1−3 were tested against ovarian carcinoma cells, as well as noncancerous embryonic kidney cells, in comparison to respective free ligands, triapine and cisplatin. While the free ligands HL1 and HL2 were devoid of antiproliferative activity, their respective metal complexes showed remarkable antiproliferative activity in a micromolar concentration range. The activity was not related to the inhibition of ribonucleotide reductase (RNR) R2 protein, but rather to cancer cell homeostasis disturbance—leading to the disruption of cancer cell signalling.
Collapse
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
- Correspondence: (I.S.); (V.B.A.)
| | - Iuliana Besleaga
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore;
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Radu Stafi
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Gerald Giester
- Department of Mineralogy and Crystallography, University of Vienna, Althan Strasse 14, A-1090 Vienna, Austria;
| | - Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Daniel Vegh
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia;
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore;
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
- Correspondence: (I.S.); (V.B.A.)
| |
Collapse
|
12
|
Abstract
Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.
Collapse
|
13
|
Molecular events and cytotoxic effects of a novel thiosemicarbazone derivative in human leukemia and lymphoma cell lines. Hematol Oncol Stem Cell Ther 2020; 14:51-64. [PMID: 32763229 DOI: 10.1016/j.hemonc.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/20/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to investigate the cytotoxic effect of 38 new thiosemicarbazone derivatives on hematological neoplastic cells lines and to select the most effective compounds to investigate the main molecular mechanisms involved in cell death. Cytotoxicity screening on Daudi and Jurkat cells revealed that only compound 1b met the selection criteria; therefore, it was chosen for further investigation. Cell viability of Daudi, Jurkat, Molt-4, Namalwa, K562, and MM.1S cell lines decreased in a concentration- and time-dependent manner after compound1b incubation; nevertheless the compound neither caused significant hemolysis nor reduction in peripheral blood mononuclear cell viability. Although no changes were observed on cell cycle or Ki-67 expression, compound1b induced apoptotic-like cell death with mitochondrial involvement, Bax/Bcl-2 inversion, AIF release, survivin inhibition, and caspase-3 activation in both Daudi and Jurkat cells. Furthermore, the compound reduced NFκB expression in Jurkat cells. In Daudi cells, compound1b also decreased CHOP, Akt, pAkt, and MAPK/ERK2 expression, thereby suggesting modulation of UPR, PI3K/Akt/mTOR, and MAPK/ERK signaling pathways. Finally, the compound was able to reduce the cell viability of samples collected from patients with different lymphoid neoplasms subtypes, showing that thiosemicarbazones derivatives could be used in the development of new drugs with anticancer activity.
Collapse
|
14
|
Shehzad MT, Khan A, Islam M, Hameed A, Khiat M, Halim SA, Anwar MU, Shah SR, Hussain J, Csuk R, Khan S, Al-Harrasi A, Shafiq Z. Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: Biochemical and computational approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
16
|
Sohtun WP, Khamrang T, Kannan A, Balakrishnan G, Saravanan D, Akhbarsha MA, Velusamy M, Palaniandavar M. Iron(III) bis‐complexes of Schiff bases of
S
‐methyldithiocarbazates: Synthesis, structure, spectral and redox properties and cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Winaki P. Sohtun
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | - Themmila Khamrang
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
- Present Address: C. I. College, Bishnupur Manipur 795126 India
| | | | - Gowdhami Balakrishnan
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | | | - Mohammad Abdulkader Akhbarsha
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | - Marappan Velusamy
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | | |
Collapse
|
17
|
Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02503-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Green TL, Nelson PN, Lawrence MA. Spectroscopic, optical sensing and RedOx behaviour of 1, 5-diphenylcarbazone. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Wang J, Wang YT, Fang Y, Lu YL, Li MX. Tin thiocarbonohydrazone complexes: synthesis, crystal structures and biological evaluation. Toxicol Res (Camb) 2019; 8:862-867. [PMID: 32206301 DOI: 10.1039/c9tx00109c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
In this article, three organotin complexes formulated as [(Me)2Sn(H2L1)] (1), [(Ph)2Sn(H2L1)]·MeOH (2) and [(Me)2Sn(HL2)(OAc)]4(Me)2O (3) (H4L1 = bis(2-hydroxybenzaldehyde) thiocarbohydrazone and H2L2 = bis(2-acetylpyrazine) thiocarbonohydrazone) have been synthesized and structurally characterized. Growth inhibition assays indicated that both the proligands and the three complexes are capable of showing anticancer activity against the human hepatocellular carcinoma HepG2 cells with H2L2 and complex 3 showing much higher cytotoxic potential. Subsequent toxicity studies on normal QSG7701cells showed that complex 3 has the highest tumor cell selectivity, and its IC50 value on QSG7701 cells is 8.48 fold higher than that in HepG2 cells. In acute toxicity experiments, complex 3 produces a dose-dependent effect in NIH mice with a LD50 value of 17.2 mg kg-1.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Science and Agronomy , Zhoukou Normal University , Zhoukou 466000 , Henan , P.R. China .
| | - Yu-Ting Wang
- College of Chemistry and Environment , Henan Institute of Finance and Banking , Zhengzhou , 450046 , Henan , P.R. China
| | - Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Yan-Li Lu
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| |
Collapse
|
20
|
Nickel Complexes Bearing SNN and SS Donor Atom Ligands: Synthesis, Structural Characterization and Biological activity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
de Siqueira LRP, de Moraes Gomes PAT, de Lima Ferreira LP, de Melo Rêgo MJB, Leite ACL. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur J Med Chem 2019; 170:237-260. [DOI: 10.1016/j.ejmech.2019.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
|
22
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
23
|
Merlot AM, Kalinowski DS, Kovacevic Z, Jansson PJ, Sahni S, Huang MLH, Lane DJ, Lok H, Richardson DR. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Curr Med Chem 2019; 26:302-322. [DOI: 10.2174/0929867324666170705120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.
Collapse
Affiliation(s)
- Angelica M. Merlot
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Patric J. Jansson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Michael L.-H. Huang
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Darius J.R. Lane
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| |
Collapse
|
24
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
25
|
Palamarciuc O, Milunović MNM, Sîrbu A, Stratulat E, Pui A, Gligorijevic N, Radulovic S, Kožíšek J, Darvasiová D, Rapta P, Enyedy EA, Novitchi G, Shova S, Arion VB. Investigation of the cytotoxic potential of methyl imidazole-derived thiosemicarbazones and their copper(ii) complexes with dichloroacetate as a co-ligand. NEW J CHEM 2019. [DOI: 10.1039/c8nj04041a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Investigation of the cytotoxic potential of imidazole-derived thiosemicarbazones and their copper(ii) complexes with CHCl2CO2− as a co-ligand.
Collapse
|
26
|
Sîrbu A, Palamarciuc O, Babak MV, Lim JM, Ohui K, Enyedy EA, Shova S, Darvasiová D, Rapta P, Ang WH, Arion VB. Copper(ii) thiosemicarbazone complexes induce marked ROS accumulation and promote nrf2-mediated antioxidant response in highly resistant breast cancer cells. Dalton Trans 2018; 46:3833-3847. [PMID: 28271099 DOI: 10.1039/c7dt00283a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of water-soluble sodium salts of 3-formyl-4-hydroxybenzenesulfonic acid thiosemicarbazones (or sodium 5-sulfonate-salicylaldehyde thiosemicarbazones) containing different substituents at the terminal nitrogen atom (H, Me, Et, Ph) and their copper(ii) complexes have been prepared and characterised by elemental analysis, spectroscopic techniques (IR, UV-vis, 1H NMR), ESI mass spectrometry, X-ray crystallography and cyclic voltammetry. The proligands and their copper(ii) complexes exhibit moderate water solubility and good stability in aqueous environment, determined by investigating their proton dissociation and complex formation equilibria. The copper(ii) complexes showed moderate anticancer activity in established human cancer cell lines, while the proligands were devoid of cytotoxicity. The anticancer activity of the copper(ii) complexes correlates with their ability to induce ROS accumulation in cells, consistent with their redox potentials within the biological window, triggering the activation of antioxidation defense mechanisms in response to the ROS insult. These studies pave the way for the investigation of ROS-inducing copper(ii) complexes as prospective antiproliferative agents in cancer chemotherapy.
Collapse
Affiliation(s)
- Angela Sîrbu
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Oleg Palamarciuc
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Maria V Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Jia Min Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Kateryna Ohui
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7., H-6720 Szeged, Hungary
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi, Romania
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
27
|
Bakir M, Lawrence MAW, Conry RR. X-ray crystallographic, spectroscopic, and electrochemical properties of Group 12 metal-chlorides of di-2-pyridyl ketone acetic acid hydrazone (dpkaah). J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1471685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mohammed Bakir
- Department of Chemistry, The University of the West Indies-Mona Campus, Kingston, Jamaica
| | - Mark A. W. Lawrence
- Department of Chemistry, The University of the West Indies-Mona Campus, Kingston, Jamaica
| | | |
Collapse
|
28
|
Rejmund M, Mrozek-Wilczkiewicz A, Malarz K, Pyrkosz-Bulska M, Gajcy K, Sajewicz M, Musiol R, Polanski J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One 2018; 13:e0188767. [PMID: 29652894 PMCID: PMC5898707 DOI: 10.1371/journal.pone.0188767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
A new class of TSCs containing piperazine (piperazinylogs) of Triapine, was designed to fulfill the di-substitution pattern at the TSCs N4 position, which is a crucial prerequisite for the high activity of the previously obtained TSC compounds–DpC and Dp44mT. We tested the important physicochemical characteristics of the novel compounds L1-L12. The studied ligands are neutral at physiological pH, which allows them to permeate cell membranes and bind cellular Fe pools more readily than less lipid-soluble ligands, e.g. DFO. The selectivity and anti-cancer activity of the novel TSCs were examined in a variety of cancer cell types. In general, the novel compounds demonstrated the greatest promise as anti-cancer agents with both a potent and selective anti-proliferative activity. We investigated the mechanism of action more deeply, and revealed that studied compounds inhibit the cell cycle (G1/S phase). Additionally we detected apoptosis, which is dependent on cell line’s specific genetic profile. Accordingly, structure-activity relationship studies suggest that the combination of the piperazine ring with Triapine allows potent and selective anticancer chelators that warrant further in vivo examination to be identified. Significantly, this study proved the importance of the di-substitution pattern of the amine N4 function.
Collapse
Affiliation(s)
- Marta Rejmund
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | - Katarzyna Malarz
- Institute of Chemistry, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | | | - Kamila Gajcy
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Poland
- * E-mail:
| |
Collapse
|
29
|
Malarz K, Mrozek-Wilczkiewicz A, Serda M, Rejmund M, Polanski J, Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget 2018; 9:17689-17710. [PMID: 29707141 PMCID: PMC5915149 DOI: 10.18632/oncotarget.24844] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/28/2018] [Indexed: 01/21/2023] Open
Abstract
Thiosemicarbazones are chelators of transition metals such as iron or copper whose anticancer potency is intensively investigated. Although two compounds from this class have entered clinical trials, their precise mechanism of action is still unknown. Recent studies have suggested the mobilization of the iron ions from a cell, as well as the inhibition of ribonucleotide reductase, and the formation of reactive oxygen species. The complexity and vague nature of this mechanism not only impedes a more rational design of novel compounds, but also the further development of those that are highly active that are already in the preclinical phase. In the current work, a series of highly active thiosemicarbazones was studied for their antiproliferative activity in vitro. Our experiments indicate that these complexes have ionophoric properties and redox activity. They appeared to be very effective generating reactive oxygen species and deregulating the antioxidative potential of a cell. Moreover, the genes that are responsible for antioxidant capacity were considerably deregulated, which led to the induction of apoptosis and cell cycle arrest. On the other hand, good intercalating properties of the studied compounds may explain their ability to cleave DNA strands and to also poison related enzymes through the formation of reactive oxygen species. These findings may help to explain the particularly high selectivity that they have over normal cells, which generally have a stronger redox equilibrium.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Marta Rejmund
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
30
|
PAN-811 prevents chemotherapy-induced cognitive impairment and preserves neurogenesis in the hippocampus of adult rats. PLoS One 2018; 13:e0191866. [PMID: 29370277 PMCID: PMC5785016 DOI: 10.1371/journal.pone.0191866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/13/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) occurs in a substantial proportion of treated cancer patients, with no drug currently available for its therapy. This study investigated whether PAN-811, a ribonucleotide reductase inhibitor, can reduce cognitive impairment and related suppression of neurogenesis following chemotherapy in an animal model. Young adult rats in Chemo and Chemo+PAN-811 groups received 3 intraperitoneal (i.p.) injections of methotrexate (MTX) and 5-fluorouracil (5-FU), and those in Saline and Saline+PAN-811 groups received equal volumes of physiological saline at 10-day intervals. PAN-811 in saline was delivered through i.p. injection, 10 min following each saline (Saline+PAN-811 group) or MTX/5-FU (Chemo+PAN-811 group) treatment, while equal volumes of saline were delivered to Saline and Chemo groups. Over Days 31–66, rats were administered tests of spatial memory, nonmatching-to-sample rule learning, and discrimination learning, which are sensitive to dysfunction in hippocampus, frontal lobe and striatum, respectively. On Day 97, neurogenesis was immnunohistochemically evaluated by counting doublecortin-positive (DCX+) cells in the dentate gyrus (DG). The results demonstrated that the Chemo group was impaired on the three cognitive tasks, but co-administration of PAN-811 significantly reduced all MTX/5-FU-induced cognitive impairments. In addition, MTX/5-FU reduced DCX+ cells to 67% of that in Saline control rats, an effect that was completely blocked by PAN-811 co-administration. Overall, we present the first evidence that PAN-811 protects cognitive functions and preserves neurogenesis from deleterious effects of MTX/5-FU. The current findings provide a basis for rapid clinical translation to determine the effect of PAN-811 on CICI in human.
Collapse
|
31
|
Hu B, Wang B, Zhao B, Guo Q, Li ZH, Zhang XH, Liu GY, Liu Y, Tang Y, Luo F, Du Y, Chen YX, Ma LY, Liu HM. Thiosemicarbazone-based selective proliferation inactivators inhibit gastric cancer cell growth, invasion, and migration. MEDCHEMCOMM 2017; 8:2173-2180. [PMID: 30108734 PMCID: PMC6072408 DOI: 10.1039/c7md00353f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
A series of novel thiosemicarbazone derivatives were synthesized and evaluated for their antiproliferative activity against several selected tumor cell lines of different origins using the MTT assay. The preliminary results indicated that the MGC-803 cell line was remarkably sensitive to all the synthesized compounds. Among this series, compound 5n showed the best inhibitory activity with an IC50 value of 0.93 μM (about 10-fold more potent than 3-AP) against MGC-803. Further mechanism studies revealed that compound 5n could obviously inhibit the proliferation of MGC-803 cells by inducing apoptosis and arresting the cell cycle at the S phase. Compound 5n also showed marked inhibition of cell migration and invasion, without significant cytotoxicity against gastric epithelial immortalized GES-1 cells.
Collapse
Affiliation(s)
- Biao Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bing Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Guang-Yao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Tang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Fan Luo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya Du
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya-Xin Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| |
Collapse
|
32
|
Mrozek-Wilczkiewicz A, Malarz K, Rams-Baron M, Serda M, Bauer D, Montforts FP, Ratuszna A, Burley T, Polanski J, Musiol R. Iron Chelators and Exogenic Photosensitizers. Synergy through Oxidative Stress Gene Expression. J Cancer 2017; 8:1979-1987. [PMID: 28819397 PMCID: PMC5559958 DOI: 10.7150/jca.17959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
In non-invasive anticancer photodynamic therapy (PDT), a nontoxic photosensitizer (PS), which is activated by visible light, is used as a magic bullet that selectively destroys cancer cells. Recently, we described the combined therapy of 5-aminolevulinic acid (ALA-PDT) with thiosemicarbazone (TSC), i.e. an iron-chelating agent. This resulted in a strong synergistic effect. Herein, we investigated a novel strategy using a combination of PDT consist of the xenobiotic-porphyrin type PS with TSC. We observed a synergistic effect for all of the pairs of TSC-PS. This approach can be rationalized by the fact that both chlorin and TSC can affect the generation of reactive oxygen species (ROS). In order to elucidate the plausible mechanism of action, we also combined the investigated PSs with DFO, which forms complexes that are redox inactive. We detected a slight antagonism or additivity for this combination. This may suggest that the ability of an iron chelator (IC) to participate in the production of ROS and the generation of oxidative stress is important.
Collapse
Affiliation(s)
- Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Katarzyna Malarz
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland.,Institute of Chemistry, University of Silesia in Katowice, Poland
| | - Marzena Rams-Baron
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Poland
| | - Daniela Bauer
- Institute of Organic and Analytical Chemistry, University of Bremen, Germany
| | | | - Alicja Ratuszna
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Thomas Burley
- The Institute of Cancer Research, London, United Kingdom
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, Poland
| |
Collapse
|
33
|
Wang Y, Gu W, Shan Y, Liu F, Xu X, Yang Y, Zhang Q, Zhang Y, Kuang H, Wang Z, Wang S. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg Med Chem Lett 2017; 27:2360-2363. [DOI: 10.1016/j.bmcl.2017.04.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
34
|
Bacher F, Dömötör O, Enyedy ÉA, Filipović L, Radulović S, Smith GS, Arion VB. Complex formation reactions of gallium(III) and iron(III/II) with l-proline-thiosemicarbazone hybrids: A comparative study. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Dobrova A, Platzer S, Bacher F, Milunovic MNM, Dobrov A, Spengler G, Enyedy ÉA, Novitchi G, Arion VB. Structure-antiproliferative activity studies on l-proline- and homoproline-4-N-pyrrolidine-3-thiosemicarbazone hybrids and their nickel(ii), palladium(ii) and copper(ii) complexes. Dalton Trans 2016; 45:13427-39. [PMID: 27485263 DOI: 10.1039/c6dt02784a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two water-soluble thiosemicarbazone-proline (H2L(1)) and thiosemicarbazone-homoproline hybrids (H2L(2)) were synthesised. By reaction of H2L(1) with NiCl2·6H2O, PdCl2 and CuCl2·2H2O in ethanol, the series of square-planar complexes [Ni(H2L(1))Cl]Cl·1.3H2O (1·1.3H2O), [Pd(H2L(1))Cl]Cl·H2O (2·H2O) and [Cu(H2L(1))Cl]Cl·0.7H2O (3·0.7H2O) was prepared, and starting from H2L(2) and CuCl2·2H2O in methanol, the complex [Cu(H2L(2))Cl2]·H2O (4·H2O) was obtained. The compounds have been characterised by elemental analysis, spectroscopic methods (IR, UV-vis and NMR spectroscopy), ESI mass spectrometry and single crystal X-ray crystallography (H2L(1), 1, 2 and 4). As a solid, 1 is diamagnetic, while it is paramagnetic in methanolic solution. The effective magnetic moment of 3.26 B.M. at room temperature indicates the change in coordination geometry from square-planar to octahedral upon dissolution. The in vitro anticancer potency of ligand precursors H2L(1) and H2L(2) and metal complexes 1-4 was studied in three human cancer cell lines (A549, CH1 and SW480) and in noncancerous murine embryonal fibroblasts (NIH/3T3), and the mechanism of cell death was also assayed by flow cytometry. Clear-cut structure-activity relationships have been established. The metal ions exert marked effects in a divergent manner: copper(ii) increases, whereas nickel(ii) and palladium(ii) decrease the cytotoxicity of the hybrids. The antiproliferative activity of H2L(1) and metal complexes 1-3 decreases in all three tumour cell lines in the following rank order: 3 > H2L(1) > 1 > 2. The role of square-planar geometry in the underlying mechanism of cytotoxicity of the metal complexes studied seems to be negligible, while structural modifications at the terminal amino group of thiosemicarbazide and proline moieties are significant for enhancing the antiproliferative activity of both hybrids and copper(ii) complexes.
Collapse
Affiliation(s)
- Aliona Dobrova
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 2016; 6:18748-79. [PMID: 26125440 PMCID: PMC4662454 DOI: 10.18632/oncotarget.4349] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022] Open
Abstract
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Vera Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Angelica M Merlot
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Zhang Z, Gou Y, Wang J, Yang K, Qi J, Zhou Z, Liang S, Liang H, Yang F. Four copper(II) compounds synthesized by anion regulation: Structure, anticancer function and anticancer mechanism. Eur J Med Chem 2016; 121:399-409. [PMID: 27309677 DOI: 10.1016/j.ejmech.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/27/2022]
Abstract
Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs. Therefore, we regulated anions to synthesize four mononuclear and binuclear Cu(II) compounds derived from thiosemicarbazone Schiff base ligands and characterized them. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells and had a capacity to arrest the cell cycle at S phase of those cells. Furthermore, reactive oxygen species (ROS), mitochondrial membrane potential and Western blot analyses revealed that these Cu(II) compounds exert their cytotoxicity through an ROS-mediated intrinsic mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Kun Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinxu Qi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| | - Shichu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Feng Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
38
|
Bacher F, Dömötör O, Chugunova A, Nagy NV, Filipović L, Radulović S, Enyedy ÉA, Arion VB. Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarbazone-piperazine and thiosemicarbazone-morpholine hybrids. Dalton Trans 2016; 44:9071-90. [PMID: 25896351 DOI: 10.1039/c5dt01076d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1 μM and 42.8 to 208.0 μM, respectively in the same human cancer cell lines after 48 h of incubation. However, the most sensitive for HL4 and complexes 1–4 proved to be the human cancer cell line LS174 (colon carcinoma) as indicated by the calculated IC50 values varying from 13.1 to 17.5 μM.
Collapse
Affiliation(s)
- Felix Bacher
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lymphocyte-Sparing Effect of Stereotactic Body Radiation Therapy in Patients With Unresectable Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2015; 94:571-9. [PMID: 26867885 DOI: 10.1016/j.ijrobp.2015.11.026] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Radiation-induced lymphopenia (RIL) is associated with inferior survival in patients with glioblastoma, lung cancer, and pancreatic cancer. We asked whether stereotactic body radiation therapy (SBRT) decreases severity of RIL compared to conventional chemoradiation therapy (CRT) in locally advanced pancreatic cancer (LAPC). METHODS AND MATERIALS Serial total lymphocyte counts (TLCs) from patients enrolled in a prospective trial of SBRT for LAPC were compared to TLCs from an existing database of LAPC patients undergoing definitive CRT. SBRT patients received 33 Gy (6.6 Gy × 5 fractions). CRT patients received a median dose of 50.4 Gy (1.8 Gy × 28 fractions) with concurrent 5-fluorouracil (77%) or gemcitabine (23%) therapy. Univariate and multivariate analyses (MVA) were used to identify associations between clinical factors and post-treatment TLC and between TLC and survival. RESULTS Thirty-two patients received SBRT and 101 received CRT. Median planning target volume (PTV) was smaller in SBRT (88.7 cm(3)) than in CRT (344.6 cm(3); P<.001); median tumor diameter was larger for SBRT (4.6 cm) than for CRT (3.6 cm; P=.01). SBRT and CRT groups had similar median baseline TLCs. One month after starting radiation, 71.7% of CRT patients had severe lymphopenia (ie, TLC <500 cells/mm(3) vs 13.8% of SBRT patients; P<.001). At 2 months, 46.0% of CRT patients remained severely lymphopenic compared with 13.6% of SBRT patients (P=.007). MVA demonstrated that treatment technique and baseline TLCs were significantly associated with post-treatment TLC at 1 but not 2 months after treatment. Higher post-treatment TLC was associated with improved survival regardless of treatment technique (hazard ratio [HR] for death: 2.059; 95% confidence interval: 1.310-3.237; P=.002). CONCLUSIONS SBRT is associated with significantly less severe RIL than CRT at 1 month in LAPC, suggesting that radiation technique affects RIL and supporting previous modeling studies. Given the association of severe RIL with survival in LAPC, further study of the effect of radiation technique on immune status is warranted.
Collapse
|
40
|
Stefani C, Al-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J Inorg Biochem 2015; 152:20-37. [DOI: 10.1016/j.jinorgbio.2015.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
|
41
|
Bacher F, Dömötör O, Kaltenbrunner M, Mojović M, Popović-Bijelić A, Gräslund A, Ozarowski A, Filipovic L, Radulović S, Enyedy ÉA, Arion VB. Effects of terminal dimethylation and metal coordination of proline-2-formylpyridine thiosemicarbazone hybrids on lipophilicity, antiproliferative activity, and hR2 RNR inhibition. Inorg Chem 2014; 53:12595-609. [PMID: 25391085 DOI: 10.1021/ic502239u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nickel(II), copper(II), and zinc(II) complexes of the proline-thiosemicarbazone hybrids 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (L-Pro-FTSC or (S)-H2L(1)) and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (D-Pro-FTSC or (R)-H2L(1)), as well as 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine 4,4-dimethyl-thiosemicarbazone (dm-L-Pro-FTSC or (S)-H2L(2)), namely, [Ni(L-Pro-FTSC-2H)]2 (1), [Ni(D-Pro-FTSC-2H)]2 (2), [Ni(dm-L-Pro-FTSC-2H)]2 (3), [Cu(dm-L-Pro-FTSC-2H)] (6), [Zn(L-Pro-FTSC-2H)] (7), and [Zn(D-Pro-FTSC-2H)] (8), in addition to two previously reported, [Cu(L-Pro-FTSC-2H)] (4), [Cu(D-Pro-FTSC-2H)] (5), were synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, circular dichroism, UV-vis, and electrospray ionization mass spectrometry. Compounds 1-3, 6, and 7 were also studied by single-crystal X-ray diffraction. Magnetic properties and solid-state high-field electron paramagnetic resonance spectra of 2 over the range of 50-420 GHz were investigated. The complex formation processes of L-Pro-FTSC with nickel(II) and zinc(II) were studied in aqueous solution due to the excellent water solubility of the complexes via pH potentiometry, UV-vis, and (1)H NMR spectroscopy. The results of the antiproliferative activity in vitro showed that dimethylation improves the cytotoxicity and hR2 RNR inhibition. Therefore, introduction of more lipophilic groups into thiosemicarbazone-proline backbone becomes an option for the synthesis of more efficient cytotoxic agents of this family of compounds.
Collapse
Affiliation(s)
- Felix Bacher
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Serda M, Kalinowski DS, Rasko N, Potůčková E, Mrozek-Wilczkiewicz A, Musiol R, Małecki JG, Sajewicz M, Ratuszna A, Muchowicz A, Gołąb J, Šimůnek T, Richardson DR, Polanski J. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One 2014; 9:e110291. [PMID: 25329549 PMCID: PMC4199632 DOI: 10.1371/journal.pone.0110291] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023] Open
Abstract
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Danuta S. Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nathalie Rasko
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Eliška Potůčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Anna Mrozek-Wilczkiewicz
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Jan G. Małecki
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | | | - Alicja Ratuszna
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Mazovia, Poland
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Des R. Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JP); (DRR)
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- * E-mail: (JP); (DRR)
| |
Collapse
|
43
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
44
|
Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Basha MT, Rodríguez C, Richardson DR, Martínez M, Bernhardt PV. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia. J Biol Inorg Chem 2013; 19:349-57. [PMID: 24317633 DOI: 10.1007/s00775-013-1070-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/18/2013] [Indexed: 12/29/2022]
Abstract
The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.
Collapse
Affiliation(s)
- Maram T Basha
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | |
Collapse
|
46
|
Bacher F, Enyedy ÉA, Nagy NV, Rockenbauer A, Bognár GM, Trondl R, Novak MS, Klapproth E, Kiss T, Arion VB. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα. Inorg Chem 2013; 52:8895-908. [PMID: 23829568 DOI: 10.1021/ic401079w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.
Collapse
Affiliation(s)
- Felix Bacher
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Merlot AM, Kalinowski DS, Richardson DR. Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal 2013; 18:973-1006. [PMID: 22424293 DOI: 10.1089/ars.2012.4540] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of iron homeostasis in cancer cells reveals a particular vulnerability to iron-depletion using iron chelators. In this review, we examine the absorption of iron from the gut; its transport, metabolism, and homeostasis in mammals; and the molecular pathways involved. Additionally, evidence for alterations in iron processing in cancer are described along with the perturbations in other biologically important transition metal ions, for example, copper(II) and zinc(II). These changes can be therapeutically manipulated by the use of novel chelators that have recently been shown to be highly effective in terms of inhibiting tumor growth. RECENT ADVANCES Such chelators include those of the thiosemicarbazone class that were originally thought to target only ribonucleotide reductase, but are now known to have multiple effects, including the generation of cytotoxic radicals. CRITICAL ISSUES Several chelators have shown marked anti-tumor activity in vivo against a variety of solid tumors. An important aspect is the toxicology and the efficacy of these agents in clinical trials. FUTURE DIRECTIONS As part of the process of the clinical assessment of the new chelators, an extensive toxicological assessment in multiple animal models is essential for designing appropriate dosing protocols in humans.
Collapse
Affiliation(s)
- Angelica M Merlot
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
48
|
Stefani C, Jansson PJ, Gutierrez E, Bernhardt PV, Richardson DR, Kalinowski DS. Alkyl substituted 2'-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: novel ligands that limit methemoglobin formation. J Med Chem 2012; 56:357-70. [PMID: 23276209 DOI: 10.1021/jm301691s] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiosemicarbazone chelators, including the 2'-benzoylpyridine thiosemicarbazones (BpT) class, show marked potential as anticancer agents. Importantly, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) has been investigated in >20 phase I and II clinical trials. However, side effects associated with 3-AP administration include methemoglobinemia. Considering this problem, novel BpT analogues were designed bearing hydrophobic, electron-donating substituents at the para position of the phenyl group (RBpT). Their Fe(III/II) redox potentials were all within the range accessible to cellular oxidants and reductants, suggesting they can redox cycle. These RBpT ligands exhibited potent and selective antiproliferative activity, which was comparable or exceeded their BpT counterparts. Major findings include that methemoglobin formation mediated by the lipophilic t-BuBpT series was significantly (p < 0.05-0.001) decreased in comparison to 3-AP in intact red blood cells and were generally comparable to the control. These data indicate the t-BuBpT ligands may minimize methemoglobinemia, which is a marked advantage over 3-AP and other potent thiosemicarbazones.
Collapse
Affiliation(s)
- Christian Stefani
- Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Milunovic MNM, Enyedy ÉA, Nagy NV, Kiss T, Trondl R, Jakupec MA, Keppler BK, Krachler R, Novitchi G, Arion VB. L- and D-proline thiosemicarbazone conjugates: coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity. Inorg Chem 2012; 51:9309-21. [PMID: 22889304 DOI: 10.1021/ic300967j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two enantiomerically pure thiosemicarbazone-proline conjugates with enhanced aqueous solubility, namely, 2-hydroxy-3-methyl-(S)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [L-Pro-STSC or (S)-H(2)L] and 2-hydroxy-3-methyl-(R)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [D-Pro-STSC or (R)-H(2)L] have been synthesized and characterized by elemental analysis, spectroscopic methods (UV-vis and (1)H and (13)C NMR), and electrospray ionization mass spectrometry. The metal complexation behavior of L-Pro-STSC, stoichiometry, and thermodynamic stability of iron(II), iron(III), copper(II), and zinc(II) complexes in 30% (w/w) dimethyl sulfoxide/H(2)O solvent mixture have been studied by pH-potentiometric, UV-vis-spectrophotometric, circular dichroism, electron paramagnetic resonance, (1)H NMR spectroscopic, and spectrofluorimetric measurements. By the reaction of CuCl(2)·2H(2)O with (S)-H(2)L and (R)-H(2)L, respectively, the complexes [Cu[(S)-H(2)L]Cl]Cl and [Cu[(R)-H(2)L]Cl]Cl have been prepared and comprehensively characterized. An X-ray diffraction study of [Cu[(R)-H(2)L]Cl]Cl showed the formation of a square-planar copper(II) complex, which builds up stacks with interplanar separation of 3.3 Å. The antiproliferative activity of two chiral ligands and their corresponding copper(II) complexes has been tested in two human cancer cell lines, namely, SW480 (colon carcinoma) and CH1 (ovarian carcinoma). The thiosemicarbazone-proline conjugates L- and D-Pro-STSC show only moderate cytotoxic potency with IC(50) values of 62 and 75 μM, respectively, in CH1 cells and >100 μM in SW480 cells. However, the corresponding copper(II) complexes are 13 and 5 times more potent in CH1 cells, based on a comparison of IC(50) values, and in SW480 cells the increase in the antiproliferative activity is even higher. In both tested cell lines, L-Pro-STSC as well as its copper(II) complex show slightly stronger antiproliferative activity than the compounds with a D-Pro moiety, yielding IC(50) values of 4.6 and 5.5 μM for [Cu(L-Pro-STSC)Cl]Cl in CH1 and SW480 cells, respectively.
Collapse
Affiliation(s)
- Miljan N M Milunovic
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|