1
|
Kalitin N, Dudina G, Kostritsa N, Sivirinova A, Karamysheva A. Evaluation of VEGF and VEGFR gene expression as prognostic markers in low and intermediate‑1 risk patients with myelodysplastic syndromes. Oncol Lett 2023; 25:95. [PMID: 36817042 PMCID: PMC9932006 DOI: 10.3892/ol.2023.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are angiogenic factors playing a key role in tumor development. VEGFs are produced by different normal and tumor cells, including platelets, lymphocytes and mononuclear cells of peripheral blood. VEGF (VEGF-A, VEGF-C and VEGF-D) and VEGFR (VEGFR1, VEGFR2 and VEGFR3) gene expression was studied in patients with myelodysplastic syndrome (MDS) to evaluate the possible prognostic role of the expression of these genes. Gene expression levels were determined using peripheral blood samples of 51 patients with MDS and 15 healthy volunteers by quantitative PCR. Expression of all VEGF and VEGFR genes was elevated in patients with MDS compared with healthy volunteers. No association of VEGF-A expression with the hemoglobin content in peripheral blood was found. The analyses of gene expression in patients with MDS stratified by risk groups according to the International Prognostic Scoring System showed progressive augmentation of VEGF-A gene expression from low to high-risk groups and VEGFR1 and VEGFR2 expression from intermediate-1 to high-risk groups. The statistically significant difference in survival time of patients with high and low levels of VEGFR1 expression was revealed. VEGF-A/VEGFR1 expression may be important for risk evaluation of patients with MDS.
Collapse
Affiliation(s)
- Nikolay Kalitin
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia,Correspondence to: Dr Nikolay Kalitin, Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia, E-mail:
| | - Galina Dudina
- Department of Oncohematology, A.S. Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Natalia Kostritsa
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasiya Sivirinova
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aida Karamysheva
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| |
Collapse
|
2
|
In Vitro Angiogenesis Inhibition and Endothelial Cell Growth and Morphology. Int J Mol Sci 2022; 23:ijms23084277. [PMID: 35457095 PMCID: PMC9025250 DOI: 10.3390/ijms23084277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
A co-culture assay with human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) was used to study whether selected angiogenesis inhibitors were able to inhibit differentiation and network formation of HUVECs in vitro. The effect of the inhibitors was determined by the morphology and the calculated percentage area covered by HUVECs. Neutralizing VEGF with avastin and polyclonal goat anti-VEGF antibody and inhibiting VEGFR2 with sorafenib and vatalanib resulted in the formation of HUVEC clusters of variable sizes as a result of inhibited EC differentiation. Furthermore, numerous inhibitors of the VEGF signaling pathways were tested for their effect on the growth and differentiation of HUVECs. The effects of these inhibitors did not reveal a cluster morphology, either individually or when combined to block VEGFR2 downstream pathways. Only the addition of N-methyl-p-bromolevamisole revealed a similar morphology as when targeting VEGF and VEGFR2, meaning it may have an inhibitory influence directly on VEGFR signaling. Additionally, several nuclear receptor ligands and miscellaneous compounds that might affect EC growth and differentiation were tested, but only dexamethasone gave rise to cluster formation similarly to VEGF-neutralizing compounds. These results point to a link between angiogenesis, HUVEC differentiation and glucocorticoid receptor activation.
Collapse
|
3
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
4
|
Mosteo L, Storer J, Batta K, Searle EJ, Duarte D, Wiseman DH. The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Front Cell Dev Biol 2021; 9:635189. [PMID: 33777944 PMCID: PMC7991089 DOI: 10.3389/fcell.2021.635189] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.
Collapse
Affiliation(s)
- Laura Mosteo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Joanna Storer
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Emma J Searle
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.,Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
5
|
Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020; 7:jcdd7040057. [PMID: 33339213 PMCID: PMC7765611 DOI: 10.3390/jcdd7040057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.
Collapse
|
6
|
Singh J, Suryan A, Kumar S, Sharma S. Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents. Anticancer Agents Med Chem 2020; 20:2228-2245. [PMID: 32767957 DOI: 10.2174/1871520620666200807220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.
Collapse
Affiliation(s)
- Jyoti Singh
- Chandigarh College of Pharmacy, Landran, Punjab, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Shweta Sharma
- Chandigarh College of Pharmacy, Landran, Punjab, India
| |
Collapse
|
7
|
Feld J, Belasen A, Navada SC. Myelodysplastic syndromes: a review of therapeutic progress over the past 10 years. Expert Rev Anticancer Ther 2020; 20:465-482. [PMID: 32479130 DOI: 10.1080/14737140.2020.1770088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) represent a range of bone marrow disorders, with patients affected by cytopenias and risk of progression to AML. There are limited therapeutic options available for patients, including hypomethylating agents (azacitidine/decitabine), growth factor support, lenalidomide, and allogeneic stem cell transplant. AREAS COVERED This review provides an overview of the progress made over the past decade for emerging therapies for lower- and higher-risk MDS (MDS-HR). We also cover advances in prognostication, supportive care, and use of allogeneic SCT in MDS. EXPERT OPINION While there have been no FDA-approved therapies for MDS in the past decade, we anticipate the approval of luspatercept based on results from the MEDALIST trial for patients with lower-risk MDS (MDS-LR) and ringed sideroblasts who have failed or are ineligible for erythropoiesis stimulating agents (ESAs). With growing knowledge of the biologic and molecular mechanisms underlying MDS, it is anticipated that new therapies will be approved in the coming years.
Collapse
Affiliation(s)
- Jonathan Feld
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| | - Abigail Belasen
- Department of Medicine, Icahn School of Medicine , New York, USA
| | - Shyamala C Navada
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| |
Collapse
|
8
|
|
9
|
Dong PY, Huang LF, Sun HY. [Research progress of bone marrow microenvironment abnormalities in myelodysplastic syndrome]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:643-646. [PMID: 28810341 DOI: 10.3760/cma.j.issn.0253-2727.2017.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - H Y Sun
- Department of Hematology, Tongji Hospital, Tongji Medical Collega, Huazhong University of Science Technology, Wuhan 430030, China
| |
Collapse
|
10
|
[Research progress of bone marrow microenvironment abnormalities in myelodysplastic syndrome]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 34:643-6. [PMID: 28810341 PMCID: PMC7342279 DOI: 10.3760/cma.j.issn.0253-2727.2013.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Palodetto B, da Silva Santos Duarte A, Rodrigues Lopes M, Adolfo Corrocher F, Roversi FM, Soares Niemann F, Priscila Vieira Ferro K, Leda Figueiredo Longhini A, Melo Campos P, Favaro P, Teresinha Olalla Saad S. SEMA3A partially reverses VEGF effects through binding to neuropilin-1. Stem Cell Res 2017. [PMID: 28636974 DOI: 10.1016/j.scr.2017.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cross-talk between hematopoietic stem cells (HSCs) and bone marrow stromal cells (BMSCs) is essential for HSCs regulation and leukemogenesis. Studying bone marrow of myelodysplasia patients, a pre-leukemic condition, we found mRNA overexpression of vascular endothelial growth factor A (VEGFA) in CD34+ HSCs and semaphorin 3A (SEMA3A) in BMSCs. To better understand the role of VEGFA and SEMA3A in leukemogenesis, we recruited 30 myelodysplastic syndrome (MDS) patients, 29 acute myeloid leukemia (6 secondary to MDS) patients and 12 controls. We found higher VEGFA expression in de novo AML patients (without prior MDS) group (p=0.0073) and higher SEMA3A expression in all BMSCs patient's samples compared to control group. We then overexpressed VEGFA in an acute myelogenous leukemia cell line, KG1 cells, and in normal CD34+ cells. This overexpression increased KG1 (p=0.045) and CD34+ cell (p=0.042) viability and KG1 (p=0.042) and CD34+ cell (p=0.047) proliferation. Moreover, KG1 and CD34+ cells overexpressing VEGFA also had increased proliferation when co-cultured with human marrow stromal HS5 cells (p=0.045 and p=0.02, respectively). However, co-culture of these transformed cells with HS5 cells overexpressing SEMA3A reduced KG1 (p=0.004) and CD34+ (p=0.009) proliferation. Co-culture of KG1 transformed cells with HS27 cells overexpressing SEMA3A reduced KG1 proliferation as well (p=0.01). To investigate whether the dominant SEMA3A effect over VEGFA could be due to competition for neuropilin1 receptor (NRP1), we performed immunoprecipitation with anti-NRP1 antibody of cell extracts of co-cultured KG1 and HS5 cells, induced or not by VEGFA and SEMA3A recombinant proteins. Results showed a preferential association of NRP1 with SEMA3A, suggesting that SEMA3A can partially reverse the effects caused by the VEGFA preventing its binding with the NRP1 receptor. Since both hematopoietic cells, leukemic and normal, showed similar behavior, we suppose that the attempt to reversion of VEGF effects by SEMA3A is a homeostatic phenomenon in the hematopoietic niche. Finally, we conclude that VEGFA overexpression confers AML cell advantages and SEMA3A may partially reverse this effect; thus, SEMA3A protein combined with VEGFA inhibitors could be beneficial for AML treatment.
Collapse
Affiliation(s)
- Bruna Palodetto
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Adriana da Silva Santos Duarte
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Matheus Rodrigues Lopes
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Flavia Adolfo Corrocher
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fernanda Soares Niemann
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Karla Priscila Vieira Ferro
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Ana Leda Figueiredo Longhini
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Paula Melo Campos
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Patricia Favaro
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil.
| |
Collapse
|
12
|
Invernizzi R, Travaglino E, Della Porta MG, Malcovati L, Gallì A, Bastia R, Ciola M, Ambaglio I, Boveri E, Rosti V, Cazzola M. Vascular endothelial growth factor overexpression in myelodysplastic syndrome bone marrow cells: biological and clinical implications. Leuk Lymphoma 2016; 58:1711-1720. [PMID: 27897450 DOI: 10.1080/10428194.2016.1262030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In myelodysplastic syndrome (MDS), vascular endothelial growth factor (VEGF) may have regulatory effects on the hematopoietic system and contribute to disease progression. We analyzed by immunocytochemistry VEGF expression in bone marrow (BM) cells from 188 patients with MDS and 96 non-hemopathic subjects. We also measured VEGF BM plasma levels and in vitro VEGF release. Our aims were to evaluate whether VEGF expression abnormalities were associated with relevant laboratory or clinical findings and their possible prognostic value. In MDS, VEGF expression was higher than in controls (p < .0001) and VEGF release was significantly higher in the low-risk cases. A trend to a positive correlation between VEGF myeloid expression and apoptotic rate was observed. High myeloid VEGF levels were independently associated with longer overall survival (p < .0001) and progression-free survival (p = .0002). Our findings suggest that, in MDS, VEGF production and release may contribute to ineffective hematopoiesis, with a potential prognostic role.
Collapse
Affiliation(s)
- Rosangela Invernizzi
- a Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Erica Travaglino
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Matteo Giovanni Della Porta
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Luca Malcovati
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Anna Gallì
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Raffaella Bastia
- a Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Mariella Ciola
- a Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Ilaria Ambaglio
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Emanuela Boveri
- c Department of Human Pathology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Vittorio Rosti
- d Biotechnology Research Area , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| | - Mario Cazzola
- b Department of Hematology Oncology , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pavia , Italy
| |
Collapse
|
13
|
Kirschbaum MH, Frankel P, Synold TW, Zain J, Claxton D, Tuscano J, Newman EM, Gandara DR, Lara PN. A phase II study of vascular endothelial growth factor trap (Aflibercept, NSC 724770) in patients with myelodysplastic syndrome: a California Cancer Consortium Study. Br J Haematol 2016; 180:445-448. [PMID: 27650362 DOI: 10.1111/bjh.14333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark H Kirschbaum
- Department of Hematology/HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Frankel
- Division of Biostatistics, City of Hope National Medical Center, Duarte, CA, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jasmine Zain
- Department of Hematology/HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - David Claxton
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Joseph Tuscano
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Davis, CA, USA
| | - Edward M Newman
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - David R Gandara
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Davis, CA, USA
| | - Primo N Lara
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Davis, CA, USA
| |
Collapse
|
14
|
Lee S, Nemeño JGE, Lee JI. Repositioning Bevacizumab: A Promising Therapeutic Strategy for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:341-357. [PMID: 26905221 DOI: 10.1089/ten.teb.2015.0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug discovery and development has been garnering an increasing trend of research due to the growing incidence of the diverse types of diseases. Recently, drug repositioning, also known as drug repurposing, has been emerging parallel to cancer and tissue engineering studies. Drug repositioning involves the application of currently approved or even abandoned drugs as alternative treatments to other diseases or as biomaterials in other fields including cell therapy and tissue engineering. In this review, the advancement of the antiangiogenesis drugs that were used as treatment for cancer and other diseases, with particular focus on bevacizumab, will be described. This will include an overview of the nature and progression of osteoarthritis (OA), one of the leading global degenerative diseases that cause morbidity, and the development of its therapeutic strategies. In addition, this will also feature the nonsteroidal anti-inflammatory drugs that are commonly prescribed for OA and the benefits of repositioning bevacizumab as alternative treatments for other diseases and as biomaterials for cartilage regeneration. To date, a few number of studies, employing different modes of administration and varying dosages in diverse animal models, have shown that bevacizumab can be used as a signal and can promote both in vitro and in vivo cartilage regeneration. However, other antiangiogenesis drugs and their effects in chondrogenesis and cartilage regeneration are also worth investigating.
Collapse
Affiliation(s)
- Soojung Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Judee Grace E Nemeño
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Jeong Ik Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea.,2 Deparment of Veterinary Medicine, College of Veterinary Medicine, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
15
|
Martini M, Capodimonti S, Iachininoto MG, Cocomazzi A, Nuzzolo ER, Voso MT, Teofili L, Larocca LM. An abnormal secretion of soluble mediators contributes to the hematopoietic-niche dysfunction in low-risk myelodysplastic syndrome. Blood Cancer J 2015; 5:e370. [PMID: 26617063 PMCID: PMC4670949 DOI: 10.1038/bcj.2015.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- M Martini
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S Capodimonti
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M G Iachininoto
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Cocomazzi
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E R Nuzzolo
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, Università di Roma Tor Vergata, Roma, Italy
| | - L Teofili
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L M Larocca
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Wang X, Owzar K, Gupta P, Larson RA, Mulkey F, Miller AA, Lewis LD, Hurd D, Vij R, Ratain MJ, Murry DJ. Vatalanib population pharmacokinetics in patients with myelodysplastic syndrome: CALGB 10105 (Alliance). Br J Clin Pharmacol 2015; 78:1005-13. [PMID: 24838014 DOI: 10.1111/bcp.12427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 05/12/2014] [Indexed: 12/14/2022] Open
Abstract
AIMS Vatalanib is an oral anti-angiogenesis agent that inhibits vascular endothelial growth factor receptor tyrosine kinases, which in patients showed auto induction of metabolism and variability in pharmacokinetic (PK) disposition. The objective was to characterize the population PK and time-dependent change in vatalanib clearance and assess exposure-toxicity relationship in patients with myelodysplastic syndrome (MDS). METHODS This was an open-label phase II study of vatalanib in MDS patients receiving 750-1250 mg once daily in 28-day cycles. Serial blood samples were obtained and plasma vatalanib concentrations measured by HPLC. Population PK analysis was performed using nonmem 7.2 with FO estimation since FOCE failed. The final model was evaluated using goodness-of-fit plots, bootstrap analysis, and visual predictive check. RESULTS Pharmacokinetic data were complete for 137 patients (86 M, 51 F), of median age 70 years (range 20-91). A one-compartment model with lagged first-order absorption and time-dependent change in oral clearance was fitted to the vatalanib plasma concentration versus time data. The population means for pre-induction and post-induction oral clearance were 24.1 l h(-1) (range: 9.6-45.5) and 54.9 l h(-1) (range: 39.8-75.6), respectively. The apparent oral clearance increased 2.3-fold, (range: 1.7-4.1-fold) from first dose to steady state. Our data did not identify a significant relationship of the predefined covariates with vatalanib pharmacokinetics, although power to detect such a relationship was limited. CONCLUSIONS Vatalanib pharmacokinetics were highly variable and the extent of auto induction was not determined to correlate with any of the pre-defined covariates.
Collapse
|
17
|
|
18
|
Mattison R, Jumonville A, Flynn PJ, Moreno-Aspitia A, Erlichman C, LaPlant B, Juckett MB. A phase II study of AZD2171 (cediranib) in the treatment of patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. Leuk Lymphoma 2014; 56:2061-6. [PMID: 25329007 DOI: 10.3109/10428194.2014.977886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) not fit for intensive treatment need novel therapy options. Vascular endothelial growth factor (VEGF) receptor inhibition is one potential mechanism by which AML and MDS could be treated. The receptor tyrosine kinase inhibitor AZD2171 (cediranib) has activity against VEGF receptors KDR and FLT-1. This multicenter phase II study was designed to test cediranib's activity in patients with AML or high-risk MDS. The primary endpoint was confirmed disease response defined as a composite of complete remission, partial remission or hematologic improvement. The study enrolled 23 subjects in the AML cohort and 16 subjects in the MDS cohort. There were no confirmed responses in either group. Since the study met the stopping rule after the first stage of enrollment, the trial was closed to further accrual. Common adverse events in both cohorts included thrombocytopenia, neutropenia, anemia, fatigue, dyspnea, diarrhea, nausea and dehydration.
Collapse
Affiliation(s)
- Ryan Mattison
- Carbone Comprehensive Cancer Center, University of Wisconsin , Madison, WI , USA
| | | | | | | | | | | | | |
Collapse
|
19
|
A phase I/II trial of Erlotinib in higher risk myelodysplastic syndromes and acute myeloid leukemia after azacitidine failure. Leuk Res 2014; 38:1430-4. [PMID: 25449687 DOI: 10.1016/j.leukres.2014.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 01/19/2023]
Abstract
Survival after azacitidine (AZA) failure in higher-risk myelodysplastic syndromes (MDS) is poor and new treatment options are needed. Erlotinib, an oral inhibitor of the epidermal-growth-factor-receptor (EGFR), has shown in preclinical models some efficacy in higher risk MDS and acute myeloid leukemia (AML). In this phase I/II trial, 30 patients received 100mg/day (n=5) or 150mg/day (n=25) of Erlotinib orally after primary or secondary resistance to AZA treatment. Eighteen MDS and 12 AML patients were treated. This outpatient treatment was well tolerated with limited grade III-IV extra hematological toxicities (skin (n=1), and diarrhea (n=3). Response was observed in 6 patients (20%) including 1 complete remission (CR), 1 marrow CR and 4 hematological improvement (2 erythroid and 2 on platelets). Median duration of response was 5 months. Erlotinib appears to induce a significant number of responses in higher risk MDS/AML having failed AZA treatment. Given the good safety profile of Erlotinib, its combination with other drugs could be tested in the future in MDS and AML.
Collapse
|