1
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Ludwig ML, Michmerhuizen NL, Wang J, Birkeland AC, Majchrowski BK, Nimmagadda S, Zhai J, Bhangale A, Kulkarni A, Jiang H, Swiecicki PL, Brenner JC. Multi-kinase compensation rescues EGFR knockout in a cell line model of head and neck squamous cell carcinoma. Arch Oral Biol 2023; 156:105822. [PMID: 37844343 PMCID: PMC11209876 DOI: 10.1016/j.archoralbio.2023.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood. METHODS To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology. We then characterized changes to the transcriptome with RNAseq and changes in response to kinase inhibitors with resazurin cell viability assays. Finally, we tested if inhibitors with activity in the EGFR knockout model also had synergistic activity in combination with EGFR inhibitors in either wild type UM-SCC-92 cells or a known Cetuximab-resistant model. RESULTS Functional and molecular analysis showed that knockout cells had decreased cell proliferation, upregulation of FGFR1 expression, and an enhanced mesenchymal phenotype. In fact, expression of common EMT genes including VIM, SNAIL1, ZEB1 and TWIST1 were all upregulated in the EGFR knockout. Surprisingly, EGFR knockout cells were resistant to FGFR inhibitor monotherapies, but sensitive to combinations of FGFR and either XIAP or IGF-1R inhibitors. Accordingly, both wild type UM-SCC-92 and Cetuximab-resistant UM-SCC-104 cells with were sensitive to combined inhibition of EGFR, FGFR and either XIAP or IGF-1R. CONCLUSIONS These data offer insights into EGFR inhibitor resistance and show that resistance to EGFR knockout likely occurs through a complex network of kinases. Future studies of cetuximab-resistant HNSCC tumors are warranted to determine if this EMT phenotype and/or multi-kinase resistance is observed in patients.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jiayu Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Behirda K Majchrowski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sai Nimmagadda
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Hui Jiang
- Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Paul L Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
3
|
Razak ARA, Wang HM, Chang JY, Ahn MJ, Munster P, Blumenschein G, Solomon B, Lim DWT, Hong RL, Pfister D, Saba NF, Lee SH, van Herpen C, Quadt C, Bootle D, Blumenstein L, Demanse D, Delord JP. A Phase 1b/2 Study of Alpelisib in Combination with Cetuximab in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. Target Oncol 2023; 18:853-868. [PMID: 37875771 PMCID: PMC10663259 DOI: 10.1007/s11523-023-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Alpelisib in combination with cetuximab showed synergistic anti-tumour activity in head and neck squamous cell carcinoma (HNSCC) models. OBJECTIVES The recommended phase 2 dose (RP2D) was determined in a phase 1b dose-escalation study. Phase 2 evaluated anti-tumour activity with a randomised part in cetuximab-naïve patients and a non-randomised part in cetuximab-resistant patients. PATIENTS AND METHODS Alpelisib was administered in 28 d cycles as whole tablets, suspension from crushed tablets or suspension from dispersible tablets in patients with platinum-resistant, recurrent/metastatic HNSCC. RESULTS The RP2D determined for alpelisib was 300 mg/d. Alpelisib-cetuximab achieved an overall response rate of 25% and 9.9% and disease control rate of 75% and 43.7% in phase 1b and phase 2 studies, respectively. Median progression-free survival (PFS) per central review was 86 d for combination treatment and 87 d for cetuximab monotherapy (unadjusted HR 1.12; 95% CI 0.69-1.82; P > 0.05). When adjusted for baseline covariates [sum of longest diameters from central data, haemoglobin and white blood cell (WBC), the results favoured combination treatment (adjusted HR 0.54; 95% CI 0.30-0.97; P = 0.039). PFS per investigator assessment resulted in an unadjusted HR of 0.76 (95% CI 0.49-1.19; P > 0.05) favouring combination treatment. The median PFS in cetuximab-resistant patients was 3.9 months. CONCLUSIONS The addition of alpelisib to cetuximab did not demonstrate a PFS benefit in cetuximab-naïve patients with advanced HNSCC. The alpelisib-cetuximab combination showed moderate activity in cetuximab-resistant patients, with a consistent safety profile. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT01602315; EudraCT 2011-006017-34.
Collapse
Affiliation(s)
- Albiruni R Abdul Razak
- Princess Margaret Cancer Centre, Toronto, Canada.
- Division of Medical Oncology, Department of Medicine, UHN Princess Margaret Hospital, 610 University Avenue, Toronto, Canada.
| | | | | | - Myung-Ju Ahn
- Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Pamela Munster
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - George Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - David Pfister
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Se-Hoon Lee
- Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | - Jean-Pierre Delord
- Clinical Research Unit, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| |
Collapse
|
4
|
Azagury DM, Gluck BF, Harris Y, Avrutin Y, Niezni D, Sason H, Shamay Y. Prediction of cancer nanomedicines self-assembled from meta-synergistic drug pairs. J Control Release 2023; 360:418-432. [PMID: 37406821 DOI: 10.1016/j.jconrel.2023.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Combination therapy is widely used in cancer medicine due to the benefits of drug synergy and the reduction of acquired resistance. To minimize emergent toxicities, nanomedicines containing drug combinations are being developed, and they have shown encouraging results. However, developing multi-drug loaded nanoparticles is highly complex and lacks predictability. Previously, it was shown that single drugs can self-assemble with near-infrared dye, IR783, to form cancer-targeted nanoparticles. A structure-based predictive model showed that only 4% of the drug space self-assembles with IR783. Here, we mapped the self-assembly outcomes of 77 small molecule drugs and drug pairs with IR783. We found that the small molecule drug space can be divided into five types, and type-1 drugs self-assemble with three out of four possible drug types that do not form stable nanoparticles. To predict the self-assembly outcome of any drug pair, we developed a machine learning model based on decision trees, which was trained and tested with F1-scores of 89.3% and 87.2%, respectively. We used literature text mining to capture drug pairs with biological synergy together with synergistic chemical self-assembly and generated a database with 1985 drug pairs for 70 cancers. We developed an online search tool to identify cancer-specific, meta-synergistic drug pairs (both chemical and biological synergism) and validated three different pairs in vitro. Lastly, we discovered a novel meta-synergistic pair, bortezomib-cabozantinib, which formed stable nanoparticles with improved biodistribution, efficacy, and reduced toxicity, even over single drugs, in an in vivo model of head and neck cancer.
Collapse
Affiliation(s)
- Dana Meron Azagury
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ben Friedmann Gluck
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Harris
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yulia Avrutin
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danna Niezni
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Alves LB, Moura AC, Amorim Dos Santos J, Borges GA, Guerra ENS. Pharmacological PI3K inhibition in head and neck squamous cell carcinoma: A systematic review. Toxicol In Vitro 2023; 88:105558. [PMID: 36681288 DOI: 10.1016/j.tiv.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND This systematic review aimed to investigate the in vitro and in vivo effects of phosphatidylinositol-3-kinase (PI3K) inhibitors on head and neck squamous cell carcinoma (HNSCC). Considering the role of PI3K and its downstream effectors in cell proliferation, invasion, and survival, it is reasonable to expect that treatment with PI3K inhibitors could control HNSCC onset and progression. Thus, the research question for our review was whether pharmacological inhibition of PI3K affects HNSCC progression. METHODS In vitro and in vivo studies were selected from six databases. We collected data regarding cell viability, apoptosis, and the regulation of protein expression levels from in vitro studies. For the in vivo studies, we analyzed the reduction in tumor size or gene and protein expression. RESULTS The included studies showed reduced cell proliferation and apoptosis after treatment with PI3K inhibitors. PI3K inhibitors in combination with other drugs had an enhanced anticancer effects compared to those of single-drug treatments. CONCLUSIONS The results support the potential of PI3K inhibitors as candidates for clinical trials in HNSCC.
Collapse
Affiliation(s)
- L B Alves
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - A C Moura
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - J Amorim Dos Santos
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - G A Borges
- Department of Oral Medicine and Periodontics, Faculty of Dentistry, University of Michigan, Ann Arbor, United States
| | - E N S Guerra
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
6
|
Michmerhuizen NL, Ludwig ML, Birkeland AC, Nimmagadda S, Zhai J, Wang J, Jewell BM, Genouw D, Remer L, Kim D, Foltin SK, Bhangale A, Kulkarni A, Bradford CR, Swiecicki PL, Carey TE, Jiang H, Brenner JC. Small molecule profiling to define synergistic EGFR inhibitor combinations in head and neck squamous cell carcinoma. Head Neck 2022; 44:1192-1205. [PMID: 35224804 PMCID: PMC8986607 DOI: 10.1002/hed.27018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival. Although epidermal growth factor receptor (EGFR)-targeting antibody cetuximab improves survival in some settings, responses are limited suggesting that alternative approaches are needed. METHODS We performed a high throughput drug screen to identify EGFR inhibitor-based synergistic combinations of clinically advanced inhibitors in models resistant to EGFR inhibitor monotherapies, and then performed downstream validation experiments on prioritized synergistic combinations. RESULTS From our screen, we re-discovered known synergistic EGFR inhibitor combinations with FGFR or IGF-1R inhibitors that were broadly effective and also discovered novel synergistic combinations with XIAP inhibitor and DNMT inhibitors that were effective in only a subset of models. CONCLUSIONS Conceptually, our data identify novel synergistic combinations that warrant evaluation in future studies, and suggest that some combinations, although highly synergistic, will require parallel companion diagnostic development to be effectively advanced in patients.
Collapse
Affiliation(s)
- Nicole L. Michmerhuizen
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Megan L. Ludwig
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sai Nimmagadda
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jingyi Zhai
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Jiayu Wang
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Brittany M. Jewell
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Dylan Genouw
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Lindsay Remer
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Daniel Kim
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Susan K. Foltin
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Apurva Bhangale
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Aditi Kulkarni
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Carol R. Bradford
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Paul L. Swiecicki
- Department of Hematology and OncologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Thomas E. Carey
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - J. Chad Brenner
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
7
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
8
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Zaryouh H, De Pauw I, Baysal H, Peeters M, Vermorken JB, Lardon F, Wouters A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med Res Rev 2021; 42:112-155. [PMID: 33928670 DOI: 10.1002/med.21806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J, Saintigny P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front Oncol 2021; 11:614332. [PMID: 33718169 PMCID: PMC7947611 DOI: 10.3389/fonc.2021.614332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide. More than half of HNSCC patients experience locoregional or distant relapse to treatment despite aggressive multimodal therapeutic approaches that include surgical resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of immunotherapy, systemic chemotherapy was previously employed as the standard first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is common in patients with HNSCC and often results in local and distant failure. Despite our better understanding of HNSCC biology, no other molecular-targeted agent has been approved for HNSCC. In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Department of Maxillofacial Surgery and Stomatology, Pitié-Salpêtrière University Hospital, Pierre et Marie Curie University, Sorbonne University, Paris, France
| | - Andy Karabajakian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Fayette
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
11
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wilson GD, Wilson TG, Hanna A, Dabjan M, Buelow K, Torma J, Marples B, Galoforo S. Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clin Transl Radiat Oncol 2020; 26:15-23. [PMID: 33251343 PMCID: PMC7677653 DOI: 10.1016/j.ctro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
We evaluated radiation with dual EGFR and PI3K targeting in head and neck cancer. Dacomitinib, showed an inverse correlation between growth inhibition and EGFR expression. Gedatolisib was effective in each cell line. Neither drug caused radiosensitization in vitro. Gedatolisib was relatively ineffective in vivo in combination with dacomitinib and/or radiation. Dacomitinib was highly effective alone and in combination with radiation and/or gedatolisib. Immunoblotting studies in vivo mirrored the effects seen with growth delay.
Background and purpose There has been little success targeting individual genes in combination with radiation in head and neck cancer. In this study we investigated whether targeting two key pathways simultaneously might be more effective. Materials and methods We studied the effect of combining dacomitinib (pan-HER, irreversible inhibitor) and gedatolisib (dual PI3K/MTOR inhibitor) with radiation in well characterized, low passage xenograft models of HNSCC in vitro and in vivo. Results Dacomitinib showed differential growth inhibition in vitro that correlated to EGFR expression whilst gedatolisib was effective in both cell lines. Neither agent radiosensitized the cell lines in vitro. In vivo studies demonstrated that dacomitinib was an effective agent alone and in combination with radiation whilst the addition of gedatolisib did not enhance the effect of these two modalities despite inhibiting phosphorylation of key genes in the PI3K/MTOR pathway. Conclusions Our results showed that combining two drugs with radiation provided no added benefit compared to the single most active drug. Dacomitinib deserves more investigation as a radiation sensitizing agent in HNSCC.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Mohamad Dabjan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Katie Buelow
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - John Torma
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
13
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Buparlisib modulates PD-L1 expression in head and neck squamous cell carcinoma cell lines. Exp Cell Res 2020; 396:112259. [PMID: 32898555 DOI: 10.1016/j.yexcr.2020.112259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022]
Abstract
High expression of the immune checkpoint receptor PD-L1 is associated with worse patient outcome in a variety of human cancers, including head and neck squamous cell carcinoma (HNSCC). Binding of PD-L1 with its partner PD-1 generates an inhibitory signal that dampens the immune system. Immunotherapy, that is blocking the PD-1/PD-L1 checkpoint, has proven to be an effective tool in cancer therapy. However, not all patients are able to benefit from this immune checkpoint inhibition. Therefore, evidence is growing of intrinsic PD-L1 signaling in cancer cells. For example, intrinsic PD-L1 expression was associated with PI3K/Akt/mTOR signaling, which is part of diverse oncogenic processes including cell proliferation, growth and survival. In this study we demonstrate the effects of PI3K/Akt/mTOR pathway inhibition by buparlisib on PD-L1 expression in HNSCC cell lines. After buparlisib treatment for 72 h, PD-L1 was downregulated in total cell lysates of HNSCC cells. Moreover, flow cytometry revealed a downregulation of PD-L1 membrane expression. Interestingly, the buparlisib mediated effects on PD-L1 expression were reduced by additional irradiation. In PD-L1 overexpressing cells, the buparlisib induced inhibition of proliferation was neutralized. In summary, our findings imply that blocking the PI3K/Akt/mTOR pathway could be a good additional therapy for patients who show poor response to immune checkpoint therapy.
Collapse
|
15
|
A Phase 1b Study of Cetuximab and BYL719 (Alpelisib) Concurrent with Intensity Modulated Radiation Therapy in Stage III-IVB Head and Neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2019; 106:564-570. [PMID: 31678634 DOI: 10.1016/j.ijrobp.2019.09.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Activation of the PI3K/mTOR signaling pathway is common in head and neck squamous cell carcinoma (HNSCC). BYL719 is an α-specific PI3K inhibitor that is synergistic and efficacious when combined with cetuximab, a Food and Drug Administration-approved radiosensitizing agent in the treatment of HNSCC. The agent independently has been shown to enhance radiosensitivity. This study evaluates the addition of BYL719 to cetuximab and radiation in the treatment of locally advanced HNSCC. METHODS AND MATERIALS This is a single-institution, phase 1 study. Patients with American Joint Committee on Cancer seventh edition stage III to IVB HNSCC received standard cetuximab (400 mg/m2 intravenous loading dose) before intensity modulated radiation therapy (IMRT) followed by 250 mg/m2 weekly infusions during IMRT. BYL719 was given orally during IMRT in 3 dose levels: (1) 200 mg/d, (2) 250 mg/d, or (3) 300 mg/d in a standard 3 + 3 dose-escalation design. RESULTS Eleven patients were evaluable. Dose level 2 was the maximum tolerated dose for BYL719. Two patients on dose level 3 had dose-limiting toxicities of oral mucositis that required a dose reduction of BYL719. One patient on dose level 2 had a dose-limiting toxicity of nausea that led to withdrawal of on-study treatment. Related grade 3 or higher adverse events consisted of decreased lymphocyte count, oral mucositis, dysphagia, hyperglycemia, maculopapular rash, and palmar-plantar erythrodysesthesia syndrome. All 11 patients had a complete response on posttreatment imaging, and 10 remain disease free. Of the 8 patients with mutational analysis, 1 had an activating PIK3CA mutation associated with a rapid response on serial intratreatment magnetic resonance imaging scans. CONCLUSIONS The recommended phase 2 dose of BYL719 is 250 mg/d in combination with cetuximab and IMRT in patients with locally advanced HNSCC. Further evaluation of the addition of BYL719 to the platinum-sparing regimen of cetuximab and IMRT in the treatment of locally advanced HNSCC is warranted.
Collapse
|
16
|
Wilson TG, Hanna A, Recknagel J, Pruetz BL, Baschnagel AM, Wilson GD. Prognostic significance of MTOR expression in HPV positive and negative head and neck cancers treated by chemoradiation. Head Neck 2019; 42:153-162. [PMID: 31657099 DOI: 10.1002/hed.25983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin (MTOR) plays a key role in regulating cell growth and metabolism and is commonly overexpressed in head and neck cancer (HNSCC). This study investigated the association of MTOR with clinical outcome in human papilloma virus (HPV) positive and negative HNSCC patients treated by chemoradiation. METHODS A tissue microarray (TMA) consisting of cores from 109 HNSCC patients treated by definitive chemoradiation was constructed and stained with antibodies against p16 and MTOR and expression correlated with clinicopathological features and clinical outcome. RESULTS MTOR varied widely between tumor cores and was not associated with HPV status or clinicopathological features. There was a positive correlation with pre-treatment FDG uptake. (P = .01). In HPV negative patients, MTOR predicted for shorter locoregional control (P = .02), diseases free survival (P = .02), and overall survival (P = .04). MTOR expression was not associated with outcome in HPV positive patients. CONCLUSIONS Prognostic significance of MTOR expression depends on HPV status.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Johnathon Recknagel
- Oakland University William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| | - Barbara L Pruetz
- Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| |
Collapse
|
17
|
Jagadeeshan S, Prasad M, Ortiz-Cuaran S, Gregoire V, Saintigny P, Elkabets M. Adaptive Responses to Monotherapy in Head and Neck Cancer: Interventions for Rationale-Based Therapeutic Combinations. Trends Cancer 2019; 5:365-390. [PMID: 31208698 DOI: 10.1016/j.trecan.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Most Phase II and III clinical trials in head and neck cancer (HNC) combine two or more treatment modalities, which are based, in part, on knowledge of the molecular mechanisms of innate and acquired resistance to monotherapy. In this review, we describe the range of tumor-cell autonomously derived (intrinsic) and tumor-microenvironment-derived (extrinsic) acquired-resistance mechanisms to various FDA-approved monotherapies for HNC. Specifically, we describe how tumor cells and the tumor microenvironment (TME) respond to radiation, chemotherapy, targeted therapy (cetuximab), and immunotherapies [programmed cell death 1 (PD-1) inhibitors] and adapt to the selective pressure of these monotherapies. Due to the diversity of adaptive responses to monotherapy, monitoring the response to treatment in patients is critical to understand the path that leads to resistance and to guide the optimal therapeutic drug combinations in the clinical setting. We envisage that applying such a rationale-based therapeutic strategy will improve treatment efficacy in HNC patients.
Collapse
Affiliation(s)
- Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Vincent Gregoire
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Radiation Therapy, Centre Léon Bérard, Lyon 69008, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Medical Oncology, Centre Léon Bérard, Lyon 69008, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
18
|
Michmerhuizen NL, Leonard E, Matovina C, Harris M, Herbst G, Kulkarni A, Zhai J, Jiang H, Carey TE, Brenner JC. Rationale for Using Irreversible Epidermal Growth Factor Receptor Inhibitors in Combination with Phosphatidylinositol 3-Kinase Inhibitors for Advanced Head and Neck Squamous Cell Carcinoma. Mol Pharmacol 2019; 95:528-536. [PMID: 30858165 PMCID: PMC6442321 DOI: 10.1124/mol.118.115162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and debilitating form of cancer characterized by poor patient outcomes and low survival rates. In HNSCC, genetic aberrations in phosphatidylinositol 3-kinase (PI3K) and epidermal growth factor receptor (EGFR) pathway genes are common, and small molecules targeting these pathways have shown modest effects as monotherapies in patients. Whereas emerging preclinical data support the combined use of PI3K and EGFR inhibitors in HNSCC, in-human studies have displayed limited clinical success so far. Here, we examined the responses of a large panel of patient-derived HNSCC cell lines to various combinations of PI3K and EGFR inhibitors, including EGFR agents with varying specificity and mechanistic characteristics. We confirmed the efficacy of PI3K and EGFR combination therapies, observing synergy with α isoform-selective PI3K inhibitor HS-173 and irreversible EGFR/ERBB2 dual inhibitor afatinib in most models tested. Surprisingly, however, our results demonstrated only modest improvement in response to HS-173 with reversible EGFR inhibitor gefitinib. This difference in efficacy was not explained by differences in ERBB target selectivity between afatinib and gefitinib; despite effectively disrupting ERBB2 phosphorylation, the addition of ERBB2 inhibitor CP-724714 failed to enhance the effect of HS-173 gefitinib dual therapy. Accordingly, although irreversible ERBB inhibitors showed strong synergistic activity with HS-173 in our models, none of the reversible ERBB inhibitors were synergistic in our study. Therefore, our results suggest that the ERBB inhibitor mechanism of action may be critical for enhanced synergy with PI3K inhibitors in HNSCC patients and motivate further preclinical studies for ERBB and PI3K combination therapies.
Collapse
Affiliation(s)
- Nicole L Michmerhuizen
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Elizabeth Leonard
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Chloe Matovina
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Micah Harris
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Gabrielle Herbst
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Aditi Kulkarni
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Jingyi Zhai
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Hui Jiang
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - Thomas E Carey
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| | - J Chad Brenner
- Departments of Pharmacology (N.L.M., T.E.C., J.C.B.) and Otolaryngology-Head and Neck Surgery (N.L.M., E.L., C.M., M.H., G.H., A.K., T.E.C., J.C.B.), and Rogel Cancer Center (T.E.C., J.C.B.), University of Michigan Medical School, and Department of Biostatistics, University of Michigan School of Public Health (J.Z., H.J.), Ann Arbor, Michigan
| |
Collapse
|
19
|
Zhang Y, Nie L, Xu K, Fu Y, Zhong J, Gu K, Zhang L. SIRT6, a novel direct transcriptional target of FoxO3a, mediates colon cancer therapy. Am J Cancer Res 2019; 9:2380-2394. [PMID: 31149050 PMCID: PMC6531295 DOI: 10.7150/thno.29724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
SIRT6, NAD+-dependent deacetylase sirtuin 6, has recently shown to suppress tumor growth in several types of cancer. Colon cancer is a challenging carcinoma associated with high morbidity and death. However, whether SIRT6 play a direct role in colon tumorigenesis and the underlying mechanism are not understood. Methods: To investigate the role of SIRT6 in colon cancer, we firstly analyzed the specimens from 50 colorectal cancer (CRC) patients. We generated shSIRT6 LoVo cells and xenograft mouse to reveal the essential role of SIRT6 in cell apoptosis and tumor growth. To explore the underlying mechanism of SIRT6 regulation, we performed FRET and real-time fluorescence imaging in living cells, real-time PCR, immunoprecipitaion, immunohistochemistry, flow cytometry and luciferase reporter assay. Results: The expression level of SIRT6 in patients' specimens is lower than that of normal controls, and patients with higher SIRT6 level have a better prognosis. Here, we identified that transcriptional factor FoxO3a is a direct up-stream of SIRT6 and positively regulated SIRT6 expression, which in turn, promotes apoptosis by activating Bax and mitochondrial pathway. Functional studies reveal that Akt inactivation increases FoxO3a activity and augment its binding to SIRT6 promoter, leading to elevated SIRT6 expression. Knocking down SIRT6 abolished apoptotic responses and conferred resistance to the treatment of BKM120. Combinational therapies with conventional drugs showed synergistic chemosensitization, which was SIRT6-dependent both in vitro and in vivo. Conclusion: The results uncover SIRT6 as a new potential biomarker for colon cancer, and its unappreciated mechanism about transcription and expression via Akt/FoxO3a pathway.
Collapse
|
20
|
Carta CFL, Oliveira Alves MG, de Barros PP, Campos MS, Scholz J, Jorge AOC, Nunes FD, Almeida JD. Screening methylation of DNA repair genes in the oral mucosa of chronic smokers. Arch Oral Biol 2018; 92:83-87. [DOI: 10.1016/j.archoralbio.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
21
|
Jung K, Kang H, Mehra R. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). CANCERS OF THE HEAD & NECK 2018; 3:3. [PMID: 31093356 PMCID: PMC6460806 DOI: 10.1186/s41199-018-0030-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
The landscape of head and neck squamous cell carcinoma (HNSCC) has been changing rapidly due to growing proportion of HPV-related disease and development of new therapeutic agents. At the same time, there has been a constant need for individually tailored treatment based on genetic biomarkers in order to optimize patient survival and alleviate treatment-related toxicities. In this regard, aberrations of PI3K pathway have important clinical implications in the treatment of HNSCC. They frequently constitute ‘gain of function’ mutations which trigger oncogenesis, and PI3K mutations can also lead to emergence of drug resistance after treatment with EGFR inhibitors. In this article, we review PI3K pathway as a target of treatment for HNSCC and summarize PI3K/mTOR inhibitors that are currently under clinical trials. In light of recent advancement of immune checkpoint inhibitors, consideration of PI3K inhibitors as potential immune modulators is also suggested.
Collapse
Affiliation(s)
- Kyungsuk Jung
- 1Department of Medicine, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA USA
| | - Hyunseok Kang
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| | - Ranee Mehra
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| |
Collapse
|
22
|
Blas K, Wilson TG, Tonlaar N, Galoforo S, Hana A, Marples B, Wilson GD. Dual blockade of PI3K and MEK in combination with radiation in head and neck cancer. Clin Transl Radiat Oncol 2018; 11:1-10. [PMID: 30014041 PMCID: PMC6019866 DOI: 10.1016/j.ctro.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background and purpose In this study we have combined fractionated radiation treatment (RT) with two molecular targeted agents active against key deregulated signaling pathways in head and neck cancer. Materials and methods We used two molecularly characterized, low passage HNSCC cell lines of differing biological characteristics to study the effects of binimetinib and buparlisib in combination with radiation in vitro and in vivo. Results Buparlisib was active against both cell lines in vitro whereas binimetinib was more toxic to UT-SCC-14. Neither agent modified radiation sensitivity in vitro. Buparlisib significantly inhibited growth of UT-SSC-15 alone or in combination with RT but was ineffective in UT-SCC-14. Binimetinib did cause a significant delay with RT in UT-SCC-14 and it significantly reduced growth of the UT-SCC-15 tumors both alone and with RT. The tri-modality treatment was not as effective as RT with a single effective agent. Conclusions No significant benefit was gained by the combined use of the two agents with RT even though each was efficacious when used alone.
Collapse
Affiliation(s)
- Kevin Blas
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Nathan Tonlaar
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hana
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
23
|
Cho J, Johnson DE, Grandis JR. Therapeutic Implications of the Genetic Landscape of Head and Neck Cancer. Semin Radiat Oncol 2018; 28:2-11. [PMID: 29173752 PMCID: PMC6293987 DOI: 10.1016/j.semradonc.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large-scale sequencing studies of head and neck squamous cell carcinoma (HNSCC) have elucidated the genetic changes that characterize HNSCC. These findings have supported the development of therapeutic strategies that target key components of aberrant signaling pathways and immune dysregulation. Cumulative evidence suggests that these agents in combination with radiotherapy may have synergistic effects. This review highlights the predictive biomarkers that have been identified from HNSCC genomic studies and implications on the development of molecular-targeting agents that may effectively treat patients with HNSCC, especially when used in combination with radiation.
Collapse
Affiliation(s)
- Janice Cho
- Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA.
| |
Collapse
|
24
|
Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget 2017; 8:22203-22217. [PMID: 28108737 PMCID: PMC5400658 DOI: 10.18632/oncotarget.14729] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is the most commonly mutated pathway in head and neck squamous cell carcinoma (HNSCC). There are several drugs targeting members of the PI3K signaling pathway in development for HNSCC. In this article, we review the genetic alterations reported in the pathway pertinent to HNSCC, various agents in development targeting various mediators of the pathway, results from clinical trials, and remaining challenges in the development of PI3K pathway inhibitors.
Collapse
|
25
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Antitumor activity of the dual PI3K/MTOR inhibitor, PF-04691502, in combination with radiation in head and neck cancer. Radiother Oncol 2017; 124:504-512. [PMID: 28823407 DOI: 10.1016/j.radonc.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a clinical challenge where new treatments are required to supplement the current-standard-of care of concurrent chemoradiation. The PI3K/AKT/MTOR pathway has been identified from several next generation DNA sequencing studies to be commonly altered and activated in HNSCC. MATERIAL AND METHODS In this study we investigated the activity of PF-04691502, an orally active ATP-competitive, dual inhibitor of PI3K and mTOR, in combination with a clinically relevant fractionated radiation treatment in two contrasting, well characterized, low passage HNSCC models. RESULTS We found that PF-04691502 combined synergistically with radiation in the UT-SCC-14 model derived from a primary cancer but was ineffective in the UT-SCC-15 model which was derived from a nodal recurrence. Further examination of the status of key signaling pathways combined with next generation DNA sequencing of a panel of 160 cancer-associated genes revealed crucial differences between the two models that could account for the differential effect. The UT-SCC-15 cell line was characterized by a higher mutational burden, an excess of variants in the PI3K/AKT/MTOR pathway, increased constitutive activity of PI3K, AKT1 and 2 and MTOR and an inability to inhibit key phosphorylation events in response to the treatments. CONCLUSION This study clearly highlights the promise of agents such as PF-04691502 in selected HNSCCs but also emphasizes the need for molecular characterization and alternative treatment strategies in non-responsive HNSCCs.
Collapse
|
27
|
Targeting PI3K Signaling in Combination Cancer Therapy. Trends Cancer 2017; 3:454-469. [DOI: 10.1016/j.trecan.2017.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
|
28
|
Swick AD, Prabakaran PJ, Miller MC, Javaid AM, Fisher MM, Sampene E, Ong IM, Hu R, Iida M, Nickel KP, Bruce JY, Wheeler DL, Kimple RJ. Cotargeting mTORC and EGFR Signaling as a Therapeutic Strategy in HNSCC. Mol Cancer Ther 2017; 16:1257-1268. [PMID: 28446642 DOI: 10.1158/1535-7163.mct-17-0115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are frequently altered along the PI3K/AKT/mTORC signaling axis. Despite excellent preclinical data, the use of compounds targeting this pathway as monotherapy has been underwhelming in initial clinical trials, and identification of predictive biomarkers remains challenging. To investigate mTORC-specific inhibition, we tested catalytic mTORC (AZD8055) and PI3K/mTORC (NVP-BEZ-235) inhibitors ± cetuximab in a panel of HNSCC cell lines and patient-derived xenografts (PDX). Cell lines were assayed for response to all agents and siRNA knockdown of targets by multiple approaches. All cell lines showed similar response to both drug and siRNA inhibition of both PI3K and mTORC pathways, with anti-EGFR combination producing modest additive effect. Five PDX models that presented PIK3CA mutation or intrinsic cetuximab resistance were treated with a combination of cetuximab and AZD8055. In vivo single-agent mTORC inhibition inhibited growth of one PIK3CA-mutant cancer, but had little effect on any PIK3CAWT or a second PIK3CA-mutant model. In all models, the combination therapy showed greater growth delay than monotherapy. The uniform ability of PI3K and mTORC inhibition to suppress the growth of HNSCC cells highlights the pathway's role in driving proliferation. Although single-agent therapy was largely ineffective in vivo, improved response of combination treatment in an array of PDXs suggests the potential for adding a catalytic mTORC inhibitor to cetuximab therapy. Overall, these results add to a growing body of evidence, suggesting that approaches that attempt to match biomarkers to the optimal therapy in HNSCC remain complex and challenging. Mol Cancer Ther; 16(7); 1257-68. ©2017 AACR.
Collapse
Affiliation(s)
- Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Prashanth J Prabakaran
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Margot C Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amal M Javaid
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Michael M Fisher
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emmanuel Sampene
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Rong Hu
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
29
|
Anisuzzaman ASM, Haque A, Wang D, Rahman MA, Zhang C, Chen Z, Chen ZG, Shin DM, Amin ARMR. In Vitro and In Vivo Synergistic Antitumor Activity of the Combination of BKM120 and Erlotinib in Head and Neck Cancer: Mechanism of Apoptosis and Resistance. Mol Cancer Ther 2017; 16:729-738. [PMID: 28119490 DOI: 10.1158/1535-7163.mct-16-0683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
We previously reported that the EGFR-targeted inhibitor erlotinib induces G1 arrest of squamous cell carcinoma of the head and neck (SCCHN) cell lines without inducing significant apoptosis. Large-scale genomic studies suggest that >50% of SCCHN cases have activation of PI3K pathways. This study investigated whether cotargeting of EGFR and PI3K has synergistic antitumor effects and apoptosis induction. We examined growth suppression, apoptosis, and signaling pathway modulation resulting from single and combined targeting of EGFR and PI3K with erlotinib and BKM120, respectively, in a panel of SCCHN cell lines and a xenograft model of SCCHN. In a panel of 12 cell lines, single targeting of EGFR with erlotinib or PI3K with BKM120 suppressed cellular growth without inducing significant apoptosis. Cotargeting of EGFR and PI3K synergistically inhibited SCCHN cell line and xenograft tumor growth, but induced variable apoptosis; some lines were highly sensitive, others were resistant. Mechanistic studies revealed that the combination inhibited both axes of the mTORC1 (S6 and 4EBP1) pathway in apoptosis-sensitive cell lines along with translational inhibition of Bcl-2, Bcl-xL, and Mcl-1, but failed to inhibit p-4EBP1, Bcl-2, Bcl-xL, and Mcl-1 in an apoptosis-resistant cell line. siRNA-mediated knockdown of eIF4E inhibited Bcl-2 and Mcl-1 and sensitized this cell line to apoptosis. Our results strongly suggest that cotargeting of EGFR and PI3K is synergistic and induces apoptosis of SCCHN cell lines by inhibiting both axes of the AKT-mTOR pathway and translational regulation of antiapoptotic Bcl-2 proteins. These findings may guide the development of clinical trials using this combination of agents. Mol Cancer Ther; 16(4); 729-38. ©2017 AACR.
Collapse
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Abedul Haque
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
30
|
Hartmann S, Grandis JR. Treatment of head and neck cancer in the elderly. Expert Opin Pharmacother 2016; 17:1903-21. [DOI: 10.1080/14656566.2016.1220540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Bozec A, Ebran N, Radosevic-Robin N, Chamorey E, Yahia HB, Marcie S, Gautier M, Penault-Llorca F, Milano G. Combination of phosphotidylinositol-3-kinase targeting with cetuximab and irradiation: A preclinical study on an orthotopic xenograft model of head and neck cancer. Head Neck 2016; 39:151-159. [DOI: 10.1002/hed.24560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alexandre Bozec
- University Institute of the Face and Neck; Nice cedex France
| | - Nathalie Ebran
- Department of Oncopharmacology; Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| | - Nina Radosevic-Robin
- Department of Pathology; Jean Perrin Comprehensive Cancer Centre; Clermont-Ferrand France
- ERTICa Research Group; University of Auvergne; Clermont-Ferrand France
| | - Emmanuel Chamorey
- Department of Clinical Research; Innovation and Statistics (DRIS), Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| | - Hedi Ben Yahia
- Department of Oncopharmacology; Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| | - Serge Marcie
- Department of Physics; Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| | - Mathieu Gautier
- Department of Physics; Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| | - Frédérique Penault-Llorca
- Department of Pathology; Jean Perrin Comprehensive Cancer Centre; Clermont-Ferrand France
- ERTICa Research Group; University of Auvergne; Clermont-Ferrand France
| | - Gérard Milano
- Department of Oncopharmacology; Antoine Lacassagne Comprehensive Cancer Centre; Nice cedex France
| |
Collapse
|
32
|
Schedule-dependent interaction between temsirolimus and cetuximab in head and neck cancer. Anticancer Drugs 2016; 27:533-9. [DOI: 10.1097/cad.0000000000000360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|