1
|
Hossain MT, Hossain MA. Targeting PI3K in cancer treatment: A comprehensive review with insights from clinical outcomes. Eur J Pharmacol 2025; 996:177432. [PMID: 40020984 DOI: 10.1016/j.ejphar.2025.177432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cancer, including cell growth, survival, metabolism, and metastasis. Its major role in tumor growth makes it a key target for cancer therapeutics, offering significant potential to slow tumor progression and enhance patient outcomes. Gain-of-function mutations, gene amplifications, and the loss of regulatory proteins like PTEN are frequently observed in malignancies, contributing to tumor development and resistance to conventional treatments such as chemotherapy and hormone therapy. As a result, PI3K inhibitors have received a lot of interest in cancer research. Several kinds of small-molecule PI3K inhibitors have been developed, including pan-PI3K inhibitors, isoform-specific inhibitors, and dual PI3K/mTOR inhibitors, each targeting a distinct component of the pathway. Some PI3K inhibitors such as idelalisib, copanlisib, duvelisib, alpelisib, and umbralisib have received FDA-approval, and are effective in the treatment of breast cancer and hematologic malignancies. Despite promising results in preclinical and clinical trials, the overall clinical success of PI3K inhibitors has been mixed. While some patients may get substantial advantages, a considerable number of them acquire resistance as a result of feedback activation of alternative pathways, adaptive tumor responses, and treatment-emergent mutations. The resistance mechanisms provide barriers to the sustained efficacy of PI3K-targeted treatments. This study reviews recent advancements in PI3K inhibitors, covering their clinical status, mechanism of action, resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Md Takdir Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Hui Z, Deng H, Zhang X, Garrido C, Lirussi F, Ye XY, Xie T, Liu ZQ. Development and therapeutic potential of DNA-dependent protein kinase inhibitors. Bioorg Chem 2024; 150:107608. [PMID: 38981210 DOI: 10.1016/j.bioorg.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
Collapse
Affiliation(s)
- Zi Hui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Carmen Garrido
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Faculté de médecine, Université de Bourgogne, Dijon, Centre de lutte contre le cancer Georges François Leclerc, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Université de Franche Comté, France, University Hospital of Besançon (CHU), France
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China.
| |
Collapse
|
3
|
Shan KS, Bonano-Rios A, Theik NWY, Hussein A, Blaya M. Molecular Targeting of the Phosphoinositide-3-Protein Kinase (PI3K) Pathway across Various Cancers. Int J Mol Sci 2024; 25:1973. [PMID: 38396649 PMCID: PMC10888452 DOI: 10.3390/ijms25041973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Khine S. Shan
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Amalia Bonano-Rios
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Nyein Wint Yee Theik
- Division of Internal Medicine, Memorial Health Care, Pembroke Pines, FL 33028, USA;
| | - Atif Hussein
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Marcelo Blaya
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| |
Collapse
|
4
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
5
|
Ji Y, Tan E, Hengelage T, Quinlan M, Hendriks BS. Exploratory Food Effect Assessment in Patients in Early Clinical Development of Oncology Drugs. Clin Pharmacol Ther 2023; 114:288-302. [PMID: 37078098 DOI: 10.1002/cpt.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Instructions for administration with regard to food are a key aspect of how patients experience oral drugs. Through potential effects on pharmacokinetics, the food condition can influence safety and efficacy, and thereby is one of many dimensions of dose optimization. Regulatory guidance from major health authorities advocates for the early investigation of food effect (FE) in clinical development. In oncology, exploratory FE (eFE) evaluation is often incorporated into the first-in-human (FIH) studies in patients to inform food condition of later clinical studies. However, the design aspects of such exploratory assessments are generally under-reported and barely described, and yet complex, due to uniqueness of FIH study design and drug development process in oncology. Herein, we review literature of eFE assessment study design in oncology in patients, and present the Novartis experience in the design, execution, and impact of eFE in FIH oncology studies from 2014 to 2021. Based on this, we propose a roadmap for eFE assessment in early clinical drug development for oncology drugs in patients, including a framework for common study design options with a focus on study- and patient-level timing for typical scenarios. We also provide a broad spectrum of decision-making factors which should be evaluated to drive the design and implementation of eFE assessment, spanning from clinical development strategy, FIH study design, to compound-specific features.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Eugene Tan
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Michelle Quinlan
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Bart S Hendriks
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
PI3K Inhibitor Eruptions: an Overview of Diagnostic and Management Strategies for the Inpatient Dermatologist. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Li Q, Liu YN, Wang J, Hu Y, Hu J, Xu RA, Shao L, Chen L. UPLC-MS/MS Technology for the Quantitative Methodology and Pharmacokinetic Analysis of Voxtalisib in Rat Plasma. Front Pharmacol 2022; 13:914733. [PMID: 35774599 PMCID: PMC9237521 DOI: 10.3389/fphar.2022.914733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Voxtalisib, is a specific, effective, and reversible dual inhibitor, which inhibits both pan-class I phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR). To date, voxtalisib has been studied in trials for melanoma, lymphoma, glioblastoma, breast cancer, and other cancers. In this study, a highly sensitive and rapid ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) technology was applied to the quantitative methodology and pharmacokinetic analysis of voxtalisib in rat plasma. After protein precipitation of the analyte by acetonitrile, the chromatographic separation was performed by gradient elution on an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with acetonitrile (solvent A) and 0.1% formic acid (solvent B) as the mobile phase. In the positive ion mode, the mass transfer detection of the analyte and IS was m/z 270.91 > 242.98 and m/z 572.30 > 246.10, respectively. In the concentration range of 1–2000 ng/ml, a good linear relationship of voxtalisib was successfully established by the UPLC-MS/MS technology, and the lower limit of quantification (LLOQ) of the analyte was identified as 1 ng/ml. Intra-day and inter-day precisions for voxtalisib were 7.5–18.7% and 13.0–16.6%, respectively, and the accuracies were in the ranges of −14.0–2.0% and −7.2–3.1%, respectively. The matrix effect, extraction recovery, carryover and stability of the analyte were all in compliance with the acceptance criteria of bioassays recommended by FDA. Finally, the pharmacokinetic profile of the analyte had been availably studied by the UPLC-MS/MS bio-analytical method after rats were treated by intragastric administration with voxtalisib (5 mg/kg). The results indicated that the UPLC-MS/MS technology can effectively and quickly quantify the analyte, and this method can also be used for the pharmacokinetic study of voxtalisib, which can provide reference for the optimization of clinical drug management in the later period.
Collapse
Affiliation(s)
- Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ya-nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu Shao
- Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Liu Shao, ; Lianguo Chen,
| | - Lianguo Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liu Shao, ; Lianguo Chen,
| |
Collapse
|
8
|
Campos JF, Besson T, Berteina-Raboin S. Review on the Synthesis and Therapeutic Potential of Pyrido[2,3-d], [3,2-d], [3,4-d] and [4,3-d]pyrimidine Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15030352. [PMID: 35337149 PMCID: PMC8949896 DOI: 10.3390/ph15030352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
The objective of this review is to list the structures composed of a pyridopyrimidine moiety which have shown a therapeutic interest or have already been approved for use as therapeutics. We consider all the synthetic protocols to prepare these pyridopyrimidine derivatives. The review is organized into four sections, successively pyrido[2,3-d]pyrimidines, pyrido[3,4-d]pyrimidines, pyrido[4,3-d]pyrimidines and pyrido[3,2-d]pyrimidines. For each compound we present the biological activity and the synthetic route reported. To produce this manuscript, the bibliographic research was done using Reaxys and Scifinder for each kind of pyridopyrimidine.
Collapse
Affiliation(s)
- Joana F. Campos
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans CNRS, ICOA UMR 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orléans, France;
| | - Thierry Besson
- Université de Rouen-Normandie (UNIROUEN), INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans CNRS, ICOA UMR 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orléans, France;
- Correspondence: ; Tel.: +33-238-494-856
| |
Collapse
|
9
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
10
|
Tarantelli C, Lupia A, Stathis A, Bertoni F. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma? Int J Mol Sci 2020; 21:E1060. [PMID: 32033478 PMCID: PMC7037719 DOI: 10.3390/ijms21031060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Antonio Lupia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| |
Collapse
|
11
|
Zhao H, Chen G, Liang H. Dual PI3K/mTOR Inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis. Onco Targets Ther 2019; 12:5415-5424. [PMID: 31360067 PMCID: PMC6625605 DOI: 10.2147/ott.s210128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background: Deregulated phosphoinositide 3-kinase (PI3K)/mTOR signaling commonly exists in glioblastoma (GBM), making this axis an attractive target for therapeutic manipulation. A recent dual inhibitor of PI3K/mTOR pathway, XL765, exhibited an attractive suppression effect on GBM tumor growth. However, the exact functional mechanisms of tumor suppression mediated by XL765 have not yet been fully characterized. Purpose: In this study, we took efforts to assess the effects of PI3K/mTOR blockade by XL765 on GBM growth in vitro and in vivo. Methods: We analyzed the cytotoxicity of XL765 in three different GBM cell lines, A172, U87MG, and T98G, by using Hoechst 33258 (Invitrogen), Annexin V/propidium iodide (PI), as well as Cell Counting Kit -8 (CCK‐8) assay. We also used A172 xenograft model to study the effect of XL765 in vivo. Results: We found that XL765 inhibits GBM viability with a wide range of potencies. Importantly, XL765 suppressed GBM cell growth by inducing endoplasmic reticulum (ER) stress dependent apoptosis. The activation of CHOP/DR5 pathway by XL765 induced ER stress is responsible for the induction of apoptosis. Moreover, the inhibition of mTOR signal by XL765 is the major source of ER stress, rather than inhibition of PI3K. At last, we demonstrated that combination of XL765 with GMB chemotherapeutic drug, temozolomide (TMZ), can achieved better therapy effect in vitro and in vivo. Conclusion: Overall, our data show that targeting PI3K/mTOR by XL765 is a promising therapeutic strategy to relieve tumor burden in GBM patients.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Huaxin Liang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
12
|
Caumanns JJ, Berns K, Wisman GBA, Fehrmann RSN, Tomar T, Klip H, Meersma GJ, Hijmans EM, Gennissen AMC, Duiker EW, Weening D, Itamochi H, Kluin RJC, Reyners AKL, Birrer MJ, Salvesen HB, Vergote I, van Nieuwenhuysen E, Brenton J, Braicu EI, Kupryjanczyk J, Spiewankiewicz B, Mittempergher L, Bernards R, van der Zee AGJ, de Jong S. Integrative Kinome Profiling Identifies mTORC1/2 Inhibition as Treatment Strategy in Ovarian Clear Cell Carcinoma. Clin Cancer Res 2018; 24:3928-3940. [PMID: 29685880 DOI: 10.1158/1078-0432.ccr-17-3060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Purpose: Advanced-stage ovarian clear cell carcinoma (OCCC) is unresponsive to conventional platinum-based chemotherapy. Frequent alterations in OCCC include deleterious mutations in the tumor suppressor ARID1A and activating mutations in the PI3K subunit PIK3CA In this study, we aimed to identify currently unknown mutated kinases in patients with OCCC and test druggability of downstream affected pathways in OCCC models.Experimental Design: In a large set of patients with OCCC (n = 124), the human kinome (518 kinases) and additional cancer-related genes were sequenced, and copy-number alterations were determined. Genetically characterized OCCC cell lines (n = 17) and OCCC patient-derived xenografts (n = 3) were used for drug testing of ERBB tyrosine kinase inhibitors erlotinib and lapatinib, the PARP inhibitor olaparib, and the mTORC1/2 inhibitor AZD8055.Results: We identified several putative driver mutations in kinases at low frequency that were not previously annotated in OCCC. Combining mutations and copy-number alterations, 91% of all tumors are affected in the PI3K/AKT/mTOR pathway, the MAPK pathway, or the ERBB family of receptor tyrosine kinases, and 82% in the DNA repair pathway. Strong p-S6 staining in patients with OCCC suggests high mTORC1/2 activity. We consistently found that the majority of OCCC cell lines are especially sensitive to mTORC1/2 inhibition by AZD8055 and not toward drugs targeting ERBB family of receptor tyrosine kinases or DNA repair signaling. We subsequently demonstrated the efficacy of mTORC1/2 inhibition in all our unique OCCC patient-derived xenograft models.Conclusions: These results propose mTORC1/2 inhibition as an effective treatment strategy in OCCC. Clin Cancer Res; 24(16); 3928-40. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tushar Tomar
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harry Klip
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gert J Meersma
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E Marielle Hijmans
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annemiek M C Gennissen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Evelien W Duiker
- Department of Pathology and Medical Biology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Desiree Weening
- Department of Genetics, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Roelof J C Kluin
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helga B Salvesen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ignace Vergote
- Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Els van Nieuwenhuysen
- Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - James Brenton
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - E Ioana Braicu
- Department of Gynecology, Charité Medical University, Berlin, Germany
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Beata Spiewankiewicz
- Department of Gynecologic Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Lorenza Mittempergher
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|