1
|
Kumar D, Salahuddin, Mazumder A, Kumar R, Ahsan MJ, Yar MS, Abbussalam, Tyagi PK, Chaitanya MVNL. Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy. Med Chem 2025; 21:264-293. [PMID: 40351067 DOI: 10.2174/0115734064320533240903062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 05/14/2025]
Abstract
Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores via bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and nonclinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Dipesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki Uttar Pradesh, 225203, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Abbussalam
- Department of Physiology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Plot No.19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
2
|
Yakkala PA, Rahaman S, Soukya PSL, Begum SA, Kamal A. An update on the development on tubulin inhibitors for the treatment of solid tumors. Expert Opin Ther Targets 2024; 28:193-220. [PMID: 38618889 DOI: 10.1080/14728222.2024.2341630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Microtubules play a vital role in cancer therapeutics. They are implicated in tumorigenesis, thus inhibiting tubulin polymerization in cancer cells, and have now become a significant target for anticancer drug development. A plethora of drug molecules has been crafted to influence microtubule dynamics and presently, numerous tubulin inhibitors are being investigated. This review discusses the recently developed inhibitors including natural products, and also examines the preclinical and clinical data of some potential molecules. AREA COVERED The current review article summarizes the development of tubulin inhibitors while detailing their specific binding sites. It also discusses the newly designed inhibitors that may be useful in the treatment of solid tumors. EXPERT OPINION Microtubules play a crucial role in cellular processes, especially in cancer therapy where inhibiting tubulin polymerization holds promise. Ongoing trials signify a commitment to revolutionizing cancer treatment and exploring targeted therapies. Challenges in microtubule modulation, like resistance and off-target effects, demand focused efforts, emphasizing combination therapies and personalized treatments. Beyond microtubules, promising avenues in cancer research include immunotherapy, genomic medicine, CRISPR gene editing, liquid biopsies, AI diagnostics, and stem cell therapy, showcasing a holistic approach for future advancements.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shaik Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - P S Lakshmi Soukya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Sajeli Ahil Begum
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
- Department of Environment, Forests, Science & Technology, Telangana State Council of Science & Technology, Hyderabad, India
| |
Collapse
|
3
|
Masci D, Puxeddu M, Di Magno L, D’Ambrosio M, Parisi A, Nalli M, Bai R, Coluccia A, Sciò P, Orlando V, D’Angelo S, Biagioni S, Urbani A, Hamel E, Nocentini A, Filiberti S, Turati M, Ronca R, Kopecka J, Riganti C, Fionda C, Bordone R, Della Rocca G, Canettieri G, Supuran CT, Silvestri R, La Regina G. 4-(3-Phenyl-4-(3,4,5-trimethoxybenzoyl)-1 H-pyrrol-1-yl)benzenesulfonamide, a Novel Carbonic Anhydrase and Wnt/β-Catenin Signaling Pathway Dual-Targeting Inhibitor with Potent Activity against Multidrug Resistant Cancer Cells. J Med Chem 2023; 66:14824-14842. [PMID: 37902628 PMCID: PMC10641813 DOI: 10.1021/acs.jmedchem.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
We synthesized new pyrrole and indole derivatives as human carbonic anhydrase (hCA) inhibitors with the potential to inhibit the Wnt/β-catenin signaling pathway. The presence of both N1-(4-sulfonamidophenyl) and 3-(3,4,5-trimethoxyphenyl) substituents was essential for strong hCA inhibitors. The most potent hCA XII inhibitor 15 (Ki = 6.8 nM) suppressed the Wnt/β-catenin signaling pathway and its target genes MYC, Fgf20, and Sall4 and exhibited the typical markers of apoptosis, cleaved poly(ADP-ribose)polymerase, and cleaved caspase-3. Compound 15 showed strong inhibition of viability in a panel of cancer cells, including colorectal cancer and triple-negative breast cancer cells, was effective against the NCI/ADR-RES DOX-resistant cell line, and restored the sensitivity to doxorubicin (DOX) in HT29/DX and MDCK/P-gp cells. Compound 15 is a novel dual-targeting compound with activity against hCA and Wnt/β-catenin. It thus has a broad targeting spectrum and is an anticancer agent with specific potential in P-glycoprotein overexpressing cell lines.
Collapse
Affiliation(s)
- Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, Rome 00168, Italy
| | - Michela Puxeddu
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Laura Di Magno
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Michele D’Ambrosio
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Anastasia Parisi
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Marianna Nalli
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Antonio Coluccia
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Pietro Sciò
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Viviana Orlando
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Sara D’Angelo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Stefano Biagioni
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, Rome 00168, Italy
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Alessio Nocentini
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitá degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino I-50019, Firenze, Italy
| | - Serena Filiberti
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Marta Turati
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Roberto Ronca
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Joanna Kopecka
- Department
of Oncology and Molecular Biotecnology Center “Guido Tarone″, Oncological Pharmacology Unit, Via Nizza 44, Torino 10126, Italy
| | - Chiara Riganti
- Department
of Oncology and Molecular Biotecnology Center “Guido Tarone″, Oncological Pharmacology Unit, Via Nizza 44, Torino 10126, Italy
| | - Cinzia Fionda
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Rosa Bordone
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Giorgia Della Rocca
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Gianluca Canettieri
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitá degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino I-50019, Firenze, Italy
| | - Romano Silvestri
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Giuseppe La Regina
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|
4
|
Zhao S, Liu J, Lv Z, Zhang G, Xu Z. Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: A mini-review. Eur J Med Chem 2023; 251:115254. [PMID: 36893627 DOI: 10.1016/j.ejmech.2023.115254] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
1,2,3-Triazole moiety which is usually constructed by highly versatile, efficacious and selective copper-catalyzed azide-alkyne cycloaddition not only can act as a linker to connect different pharmacophores, but also is a useful pharmacophore with diverse biological properties. 1,2,3-Triazoles are readily interact with diverse enzymes and receptors in cancer cells through non-covalent interactions and can inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. In particular, 1,2,3-triazole-containing hybrids have the potential to exert dual or multiple anticancer mechanisms of action, representing useful scaffolds in expediting development of novel anticancer agents. The current review summarizes the in vivo anticancer efficacy and mechanisms of action of 1,2,3-triazole-containing hybrids reported in the last decade to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Shijia Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Zaosheng Lv
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China
| | - Guangde Zhang
- Engineering Training Center, Wuhan University of Science and Technology, Wuhan, PR China.
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
5
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int J Mol Sci 2022; 23:4001. [PMID: 35409361 PMCID: PMC8999808 DOI: 10.3390/ijms23074001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years. Meanwhile, different designs and syntheses of novel anti-tubulin hybrids have been broadly studied, illustrated, and detailed in the literature. This review describes various molecular hybrids with their reported structural-activity relationships (SARs) where it is possible in an effort to generate efficacious tubulin polymerization inhibitors. The aim is to create a platform on which new active scaffolds can be modeled for improved tubulin polymerization inhibitory potency and hence, the development of new therapeutic agents against cancer.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
6
|
Szafrański K, Sławiński J, Tomorowicz Ł, Kawiak A. Synthesis, Anticancer Evaluation and Structure-Activity Analysis of Novel ( E)- 5-(2-Arylvinyl)-1,3,4-oxadiazol-2-yl)benzenesulfonamides. Int J Mol Sci 2020; 21:E2235. [PMID: 32210190 PMCID: PMC7139731 DOI: 10.3390/ijms21062235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
To learn more about the structure-activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7-36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47-50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51-55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activity relationship showed significant differences in activity depending on the substituent in position 3 of the benzenesulfonamide ring and indicated as the optimal meta position of the sulfonamide moiety relative to the oxadizole ring. In the next stage, chemometric analysis was performed basing on a set of computed molecular descriptors. Hierarchical cluster analysis was used to examine the internal structure of the obtained data and the quantitative structure-activity relationship (QSAR) analysis with multiple linear regression (MLR) method allowed for finding statistically significant models for predicting activity towards all three cancer cell lines.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Łukasz Tomorowicz
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| |
Collapse
|
7
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|