1
|
Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, Zhou J, Yang LH. Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon 2024; 10:e32288. [PMID: 38912485 PMCID: PMC11190665 DOI: 10.1016/j.heliyon.2024.e32288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.
Collapse
Affiliation(s)
- Yong-Zhuo Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Deng
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Yang Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Xi Su
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Min Pan
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lan Lu
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Qi Ya
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hui Yang
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research(Guangxi Medical University), Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Luiz-Ferreira A, Pacifico T, Cruz ÁC, Laudisi F, Monteleone G, Stolfi C. TRAIL-Sensitizing Effects of Flavonoids in Cancer. Int J Mol Sci 2023; 24:16596. [PMID: 38068921 PMCID: PMC10706592 DOI: 10.3390/ijms242316596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.
Collapse
Affiliation(s)
- Anderson Luiz-Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of Biotechnology, Federal University of Catalão (UFCAT), Catalão 75704020, GO, Brazil;
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Álefe Cardoso Cruz
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of Biotechnology, Federal University of Catalão (UFCAT), Catalão 75704020, GO, Brazil;
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (T.P.); (F.L.); (G.M.)
| |
Collapse
|
4
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
5
|
Eraky SM, El-Kashef DH, El-Sherbiny M, Abo El-Magd NF. Naringenin mitigates thioacetamide-induced hepatic encephalopathy in rats: targeting the JNK/Bax/caspase-8 apoptotic pathway. Food Funct 2023; 14:1248-1258. [PMID: 36625308 DOI: 10.1039/d2fo03470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatic encephalopathy (HE) is a serious neurological disorder which is related to liver dysfunction. HE was induced by thioacetamide (TAA) injection (350 mg kg-1, i.p.) for 3 consecutive days. This study was performed to investigate the prophylactic impact of naringenin against TAA-induced HE. Naringenin (100 mg kg-1) was orally administered for 7 days starting 4 days prior to TAA injection. Naringenin effectively mitigated TAA-induced behavioural, structural and functional alterations. Naringenin ameliorated TAA-induced cognitive impairment as evidenced by the increase in the fall-off time in the rotarod test, decrease in the escape latency in the Morris water maze test and increase in the time spent in the center and in the number of rearing in the open field test. Additionally, naringenin significantly decreased the serum levels of transaminases, alkaline phosphatase, gamma-glutamyl transferase, bile and ammonia. Moreover, naringenin succeeded in reducing the levels of hepatic and cerebral c-Jun N-terminal kinases (JNK) as well as hepatic SORT1 levels. In addition, naringenin successfully elevated the levels of hepatic and cerebral pro-brain-derived neurotrophic factor (pro-BDNF) and BDNF in addition to the cerebral SORT1 level. Finally, naringenin markedly decreased the expression of Bax and caspase-8 as presented by the immunohistochemical results. Collectively, the ameliorative effect of naringenin on the development of HE might be attributed to the modulation of the JNK/Bax/caspase-8 apoptotic pathway.
Collapse
Affiliation(s)
- Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura, Egypt
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Ye L, Ma RH, Zhang XX, Thakur K, Zhang JG, Khan MR, Busquets R, Wei ZJ. Isorhamnetin Induces Apoptosis and Suppresses Metastasis of Human Endometrial Carcinoma Ishikawa Cells via Endoplasmic Reticulum Stress Promotion and Matrix Metalloproteinase-2/9 Inhibition In Vitro and In Vivo. Foods 2022; 11:3415. [PMID: 36360027 PMCID: PMC9654916 DOI: 10.3390/foods11213415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
Endometrial cancer (EC) is a very common female cancer which has attracted more and more attention. According to the individual patient's condition, the current treatment of EC patients is mainly based on surgery, which is supplemented by chemotherapy, radiotherapy, and endocrine intervention. However, these existing treatment strategies also have some inevitable limitations. Therefore, it is particularly important to find an active ingredient with low toxicity and a high safety profile against EC. Isorhamnetin is a flavonoid known to be present in a variety of plants, such as sea buckthorn, dry willow, and wolfberry. In recent years, the anti-tumor effects of isorhamnetin have been reported. In our study, isorhamnetin was shown to induce apoptosis in Ishikawa cells by inducing the endogenous mitochondrial apoptotic pathway and exogenous death receptor pathway, promoting the endoplasmic reticulum stress-related pathway, and activating the corresponding markers of UPR response. In addition, isorhamnetin affected the expression of MMP2 and MMP9-related proteins in vitro and in vivo and eventually repressed metastasis. Therefore, isorhamnetin can be used as a promising medicinal material for the treatment of EC.
Collapse
Affiliation(s)
- Lei Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Run-Hui Ma
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiu-Xiu Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
7
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
8
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
9
|
Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data. Nutr Res 2022; 105:33-52. [DOI: 10.1016/j.nutres.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
|
10
|
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Ramachandran MA, Anitha TS. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr Mol Pharmacol 2021; 15:338-360. [PMID: 33881978 DOI: 10.2174/1874467214666210420115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. OBJECTIVE In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. METHODS We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. RESULTS It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. CONCLUSION To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Collapse
Affiliation(s)
- Daisy S Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory - Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku. Finland
| | | | | |
Collapse
|
11
|
Regulated Necrotic Cell Death in Alternative Tumor Therapeutic Strategies. Cells 2020; 9:cells9122709. [PMID: 33348858 PMCID: PMC7767016 DOI: 10.3390/cells9122709] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
The treatment of tumors requires the induction of cell death. Radiotherapy, chemotherapy, and immunotherapy are administered to kill cancer cells; however, some cancer cells are resistant to these therapies. Therefore, effective treatments require various strategies for the induction of cell death. Regulated cell death (RCD) is systematically controlled by intracellular signaling proteins. Apoptosis and autophagy are types of RCD that are morphologically different from necrosis, while necroptosis, pyroptosis, and ferroptosis are morphologically similar to necrosis. Unlike necrosis, regulated necrotic cell death (RNCD) is caused by disruption of the plasma membrane under the control of specific proteins and induces tissue inflammation. Various types of RNCD, such as necroptosis, pyroptosis, and ferroptosis, have been used as therapeutic strategies against various tumor types. In this review, the mechanisms of necroptosis, pyroptosis, and ferroptosis are described in detail, and a potential effective treatment strategy to increase the anticancer effects on apoptosis- or autophagy-resistant tumor types through the induction of RNCD is suggested.
Collapse
|