1
|
Zheng L, Li Y, Güngör C, Ge H. Gut microbiota influences colorectal cancer through immune cell interactions: a Mendelian randomization study. Discov Oncol 2025; 16:747. [PMID: 40358736 PMCID: PMC12075717 DOI: 10.1007/s12672-025-02486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the most prevalent malignant tumor of the digestive system globally, posing a significant threat to human health and quality of life. Recent studies have established associations between gut microbiota and immune cells with CRC; however, the mechanisms by which gut microbiota influence the development and progression of CRC through immune mediators remain poorly understood. METHODS We conducted a two-sample, bidirectional Mendelian randomization analysis. We utilized 731 immune cell types and 473 gut microbial species along with colorectal cancer statistics from published summary statistics from genome-wide association studies (GWAS).The analysis employed several methodologies, including inverse variance-weighted (IVW) analysis, MR-Egger regression, the weighted median method, and both weighted and simple model approaches.Sensitivity analyses were performed to confirm the reliability of the Mendelian randomization results, and reverse Mendelian randomization was used to assess the overall impact of CRC on gut microbiota and immune cells. RESULTS Our findings suggest a causal relationship involving nine immunophenotypes and five specific gut microbial taxa with CRC. Notably, the gut microbes Alloprevotella and Holdemania, along with immune cell types CD3 on CD28- CD8br and CD4 + T cells, demonstrated significant causal associations with CRC. Mediation analysis revealed that the association between Alloprevotella and CRC was mediated by CD4 + T cells, with a mediation effect of 6.48%. Additionally, Holdemania was found to mediate its association with CRC through CD3 on CD28- CD8br, exhibiting a mediation effect of 9.29%. Reverse Mendelian randomization did not indicate any causal effect of CRC on specific immune cells or gut microbiota. Two-sided sensitivity analyses revealed no evidence of heterogeneity or horizontal pleiotropy in our findings. CONCLUSIONS This comprehensive Mendelian randomization study enhances our understanding of the mechanisms by which gut microbiota affects CRC through immune cell interactions. Further investigations are warranted to unravel the underlying mechanisms linking gut microbiota, immune cells, and colorectal cancer.
Collapse
Affiliation(s)
- Linyi Zheng
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuqiang Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heming Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Duan T, Ren Z, Jiang H, Ding Y, Wang H, Wang F. Gut microbiome signature in response to neoadjuvant chemoradiotherapy in patients with rectal cancer. Front Microbiol 2025; 16:1543507. [PMID: 40270827 PMCID: PMC12014591 DOI: 10.3389/fmicb.2025.1543507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Background Rectal cancer remains a leading cause of cancer-associated mortality, especially in advanced cases with limited treatment options. Emerging evidence suggests that the gut microbiome may influence the therapeutic efficacy of neoadjuvant chemoradiotherapy (CRT). Objective This study aimed to explore the dynamic changes in gut microbiome composition and metabolic pathways in rectal cancer patients undergoing CRT. Methods Paired fecal samples were collected from rectal cancer patients pre- and post-CRT. 16S rRNA amplicon sequencing and proteomics analysis were conducted to investigate microbial and metabolic alterations. Results Significant shifts in the microbiome were observed, with Fusobacterium, Subdoligranulum, Prevotella, Alloprevotella, and Bacteroides being enriched pre-CRT, while Streptococcus, Megamonas, Megasphaera, Escherichia-Shigella, and Olsenella became dominant post-CRT. Metabolic analysis revealed upregulated carbohydrate metabolism and downregulated lipid and energy metabolism. Conclusion These findings identify potential microbial biomarkers and metabolic pathways associated with CRT response, offering insights into personalized treatment strategies.
Collapse
Affiliation(s)
- Tingmei Duan
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengting Ren
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haili Jiang
- Department of Integrated Chinese and Western Medicine Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Ding
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Meiners F, Kreikemeyer B, Newels P, Zude I, Walter M, Hartmann A, Palmer D, Fuellen G, Barrantes I. Strawberry dietary intervention influences diversity and increases abundances of SCFA-producing bacteria in healthy elderly people. Microbiol Spectr 2025; 13:e0191324. [PMID: 39772703 PMCID: PMC11792484 DOI: 10.1128/spectrum.01913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiome is amenable to dietary interventions, and polyphenol-rich diets have been shown to enhance abundances of bacteria associated with short-chain fatty acid (SCFA) production. We examined the effects of a strawberry-based intervention on the gut microbiome of 69 healthy elderly German adults. Participants in five groups consumed varying amounts of strawberries, freeze-dried strawberries, and capers in olive oil over 10 weeks as part of a randomized controlled trial. 16S rRNA sequencing was used to analyze differences in microbial composition, diversity, phenotypes, differential abundance, and functional pathways. The intervention group featuring the highest amounts of fresh and freeze-dried strawberries without capers in olive oil (group 4) showed changes in gut microbial diversity and differential abundance that could be linked to improved health. Beta diversity, based on weighted UniFrac distances, increased significantly (P = 0.0035), potentially pathogenic bacteria decreased (P = 0.04), and abundances of SCFA-producing genera Faecalibacterium and Prevotella increased significantly. Other findings included a significant reduction of CAG-352, Preveotellaceae_NK3B31-group, and Eubacterium coprostanoligenes (group 2), and a trend of lowered Firmicutes-to-Bacteroidetes ratio (P = 0.067) and a reduction in Ruminococcaceae (group 3). Our findings suggest that a dietary intervention based on strawberries can positively alter the gut microbiota of healthy elderly people as seen in an enrichment of SCFA-producing genera, increased diversity, and a reduction in potentially pathogenic bacteria.IMPORTANCEAging is often associated with changes in the gut microbiome, including a decline in beneficial bacteria and an increase in potentially pathogenic species. Addressing these changes through lifestyle interventions is of significant interest. Our study demonstrates that a 10-week dietary intervention with strawberries can beneficially modulate gut microbial composition and diversity in healthy elderly individuals. Notably, the group consuming the highest amount of strawberries (without capers in olive oil) initially had higher abundances of potentially pathogenic bacteria. Here, the intervention led to increased abundances of the beneficial genera Faecalibacterium and Prevotella, which are linked to health benefits including reduced inflammation and improved lipid metabolism. These findings suggest that strawberry consumption can positively influence gut microbial composition, thereby contributing to overall health and disease prevention in older adults.
Collapse
Affiliation(s)
- Franziska Meiners
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsmedizin Rostock, Rostock, Germany
| | | | - Ingmar Zude
- Biovis Diagnostik, Limburg-Offenheim, Germany
| | - Michael Walter
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Rostock, Rostock, Germany
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Rostock, Germany
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Rostock, Germany
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Israel Barrantes
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
4
|
Wang X, Zheng Z, Yu D, Qiu X, Yang T, Li R, Liu J, Wang X, Jin P, Sheng J, Qin N, Li N, Xu J. Colorectal cancer in Lynch syndrome families: consequences of gene germline mutations and the gut microbiota. Orphanet J Rare Dis 2025; 20:30. [PMID: 39827259 PMCID: PMC11742751 DOI: 10.1186/s13023-025-03543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Lynch syndrome (LS)-associated colorectal cancer (CRC) always ascribes to pathogenic germline mutations in mismatch repair (MMR) genes. However, the penetrance of CRC varies among those with the same MMR gene mutation. Thus, we hypothesized that the gut microbiota is also involved in CRC development in LS families. METHODS This prospective, observational study was performed from December 2020 to March 2023. We enrolled 72 individuals from 9 LS families across six provinces in China and employed 16S rRNA gene amplicon sequencing to analyze the fecal microbiota components among LS-related CRC patients (AS group), their spouses (BS group), mutation carriers without CRC (CS group), and non-mutation carriers (DS group) using alpha and beta diversity indices. RESULTS There were no apparent differences in age or gender among the four groups. Alpha and beta diversity indices exhibited no significant differences between the AS and BS groups, verifying the role of germline mutations in the occurrence of CRC in LS families. Beta diversity analysis exhibited significant differences between the AS and CS groups, revealing the importance of the gut microbiota for the occurrence of CRC in LS families. A greater difference (both alpha and beta diversity indices) was shown between the AS and DS groups, demonstrating the combined impact of the gut microbiota and genetic germline mutations on the occurrence of CRC in LS families. Compared with those in the CS and DS groups, we identified ten microbial genera enriched in the AS group, and one genus (Bacteroides) decreased in the AS group. Among the elevated genera in the AS group, Agathobacter, Coprococcus and Prevotellaceae_NK3B31_group were butyrate-producing genera. CONCLUSION This study found the development of CRC in the LS families can be attributed to the combined effects of gene germline mutations as well as the gut microbiota and provided novel insights into the prevention and treatment of CRC in the LS families.
Collapse
Affiliation(s)
- Xuexin Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhijun Zheng
- Realbio Genomics Institute, Shanghai, 201114, China.
| | - Dongliang Yu
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xiaojue Qiu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ting Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruoran Li
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Liu
- Realbio Genomics Institute, Shanghai, 201114, China
- Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Peng Jin
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Nan Qin
- Tenth People's Hospital of Tongji University, Shanghai, 200072, China
- Qingdao Realbio Precision Medical Test Co. Ltd, Qingdao, 266071, China
| | - Na Li
- Medical School of Chinese PLA, Beijing, 100853, China.
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Hertz S, Anderson JM, Nielsen HL, Schachtschneider C, McCauley KE, Özçam M, Larsen L, Lynch SV, Nielsen H. Fecal microbiota is associated with extraintestinal manifestations in inflammatory bowel disease. Ann Med 2024; 56:2338244. [PMID: 38648495 PMCID: PMC11036898 DOI: 10.1080/07853890.2024.2338244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION A large proportion of patients with inflammatory bowel disease (IBD) experience IBD-related inflammatory conditions outside of the gastrointestinal tract, termed extraintestinal manifestations (EIMs) which further decreases quality of life and, in extreme cases, can be life threatening. The pathogenesis of EIMs remains unknown, and although gut microbiota alterations are a well-known characteristic of patients with IBD, its relationship with EIMs remains sparsely investigated. This study aimed to compare the gut microbiota of patients with IBD with and without EIMs. METHODS A total of 131 Danish patients with IBD were included in the study, of whom 86 had a history of EIMs (IBD-EIM) and 45 did not (IBD-C). Stool samples underwent 16S rRNA sequencing. Amplicon sequence variants (ASVs) were mapped to the Silva database. Diversity indices and distance matrices were compared between IBD-EIM and IBD-C. Differentially abundant ASVs were identified using a custom multiple model statistical analysis approach, and modules of co-associated bacteria were identified using sparse correlations for compositional data (SparCC) and related to patient EIM status. RESULTS Patients with IBD and EIMs exhibited increased disease activity, body mass index, increased fecal calprotectin levels and circulating monocytes and neutrophils. Microbiologically, IBD-EIM exhibited lower fecal microbial diversity than IBD-C (Mann-Whitney's test, p = .01) and distinct fecal microbiota composition (permutational multivariate analysis of variance; weighted UniFrac, R2 = 0.018, p = .01). A total of 26 ASVs exhibited differential relative abundances between IBD-EIM and IBD-C, including decreased Agathobacter and Blautia and increased Eggerthella lenta in the IBD-EIM group. SparCC analysis identified 27 bacterial co-association modules, three of which were negatively related to EIM (logistic regression, p < .05) and included important health-associated bacteria, such as Agathobacter and Faecalibacterium. CONCLUSIONS The fecal microbiota in IBD patients with EIMs is distinct from that in IBD patients without EIM and could be important for EIM pathogenesis.
Collapse
Affiliation(s)
- Sandra Hertz
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Moltzau Anderson
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Claire Schachtschneider
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn E. McCauley
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Mustafa Özçam
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Lone Larsen
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Aalborg University, Aalborg, Denmark
| | - Susan V. Lynch
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Paziewska M, Szelest M, Kiełbus M, Masternak M, Zaleska J, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Morawska M, Kalicińska E, Jabłonowska P, Wróbel T, Wolska-Washer A, Błoński JZ, Robak T, Bullinger L, Giannopoulos K. Increased abundance of Firmicutes and depletion of Bacteroidota predicts poor outcome in chronic lymphocytic leukemia. Oncol Lett 2024; 28:552. [PMID: 39328278 PMCID: PMC11425030 DOI: 10.3892/ol.2024.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024] Open
Abstract
Evidence indicates that there are significant alterations in gut microbiota diversity and composition in patients with hematological malignancies. The present study investigated the oral and intestinal microbiome in patients with chronic lymphocytic leukemia (CLL) (n=81) and age-matched healthy volunteers (HVs; n=21) using 16S ribosomal RNA next-generation sequencing. Changes in both oral and gut microbiome structures were identified, with a high abundance of Proteobacteria and depletion of Bacteroidetes in CLL as compared to HVs. Oral and stool samples of patients with CLL revealed a significant change in the abundance of short-chain fatty acid-producing genera in comparison with HVs. Furthermore, the relative abundance of oral and intestine Bacteroidetes was significantly decreased in patients with CLL with negative prognostic features, including unmutated immunoglobulin heavy chain gene (IGHV). Notably, an increased abundance of gut Firmicutes was found to be associated with high expression of CD38. Finally, the present study suggested the log Firmicutes/Bacteroidota ratio as a novel intestinal microbiome signature associated with a shorter time to first treatment in individuals with CLL. The findings indicate that oral and gut microbial diversity in CLL might point to the inflammatory-related modulation of the clinical course of the disease.
Collapse
Affiliation(s)
- Magdalena Paziewska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Hematology and Bone Marrow Transplantation, St John's Cancer Centre, 20-090 Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | | | | | - Marta Morawska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Jerzy Zdzisław Błoński
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin (Corporate Member of Free University of Berlin, Humboldt University of Berlin), D-13353 Berlin, Germany
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Xia Y, Duan L, Zhang XL, Niu YJ, Ling X. Integrated analysis of gut microbiota and metabolomic profiling in colorectal cancer metastasis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4467-4478. [PMID: 38483004 DOI: 10.1002/tox.24228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 10/24/2024]
Abstract
Colorectal cancer (CRC) is characterized by its heterogeneity and complex metastatic mechanisms, presenting significant challenges in treatment and prognosis. This study aimed to unravel the intricate interplay between the gut microbiota and metabolic alterations associated with CRC metastasis. By employing high-throughput sequencing and advanced metabolomic techniques, we identified distinct patterns in the gut microbiome and fecal metabolites across different CRC metastatic sites. The differential gene analysis highlighted significant enrichment in biological processes related to immune response and extracellular matrix organization, with key genes playing roles in the complement and clotting cascades, and staphylococcus aureus infections. Protein-protein interaction networks further elucidated the potential mechanisms driving CRC spread, emphasizing the importance of extracellular vesicles and the PPAR signaling pathway in tumor metastasis. Our comprehensive microbiota analysis revealed a relatively stable alpha diversity across groups but identified specific bacterial genera associated with metastatic stages. Metabolomic profiling using OPLS-DA models unveiled distinct metabolic signatures, with differential metabolites enriched in pathways crucial for cancer metabolism and immune modulation. Integrative analysis of the gut microbiota and metabolic profiles highlighted significant correlations, suggesting a complex interplay that may influence CRC progression and metastasis. These findings offer novel insights into the microbial and metabolic underpinnings of CRC metastasis, paving the way for innovative diagnostic and therapeutic strategies targeting the gut microbiome and metabolic pathways.
Collapse
Affiliation(s)
- Yang Xia
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Ling Duan
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xin-Lian Zhang
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Yu-Juan Niu
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Xiaoling Ling
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
9
|
Huang Z, Huang X, Huang Y, Liang K, Chen L, Zhong C, Chen Y, Chen C, Wang Z, He F, Qin M, Long C, Tang B, Huang Y, Wu Y, Mo X, Weizhong T, Liu J. Identification of KRAS mutation-associated gut microbiota in colorectal cancer and construction of predictive machine learning model. Microbiol Spectr 2024; 12:e0272023. [PMID: 38572984 PMCID: PMC11064510 DOI: 10.1128/spectrum.02720-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.
Collapse
Affiliation(s)
- Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yili Huang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Kunmei Liang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Lei Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuzhuo Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Yingxin Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqi Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongzhi Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tang Weizhong
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
10
|
Massa C, Seliger B. Combination of multiple omics techniques for a personalized therapy or treatment selection. Front Immunol 2023; 14:1258013. [PMID: 37828984 PMCID: PMC10565668 DOI: 10.3389/fimmu.2023.1258013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Despite targeted therapies and immunotherapies have revolutionized the treatment of cancer patients, only a limited number of patients have long-term responses. Moreover, due to differences within cancer patients in the tumor mutational burden, composition of the tumor microenvironment as well as of the peripheral immune system and microbiome, and in the development of immune escape mechanisms, there is no "one fit all" therapy. Thus, the treatment of patients must be personalized based on the specific molecular, immunologic and/or metabolic landscape of their tumor. In order to identify for each patient the best possible therapy, different approaches should be employed and combined. These include (i) the use of predictive biomarkers identified on large cohorts of patients with the same tumor type and (ii) the evaluation of the individual tumor with "omics"-based analyses as well as its ex vivo characterization for susceptibility to different therapies.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
11
|
Fan JQ, Zhao WF, Lu QW, Zha FR, Lv LB, Ye GL, Gao HL. Fecal microbial biomarkers combined with multi-target stool DNA test improve diagnostic accuracy for colorectal cancer. World J Gastrointest Oncol 2023; 15:1424-1435. [PMID: 37663945 PMCID: PMC10473925 DOI: 10.4251/wjgo.v15.i8.1424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major global health burden. The current diagnostic tests have shortcomings of being invasive and low accuracy. AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA (MT-sDNA) test in the diagnosis of CRC. METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial. The intestinal microbiota was tested using 16S rRNA gene sequencing. This case-control study enrolled 54 CRC patients and 51 healthy controls. We identified biomarkers of bacterial structure, analyzed the relationship between different tumor markers and the relative abundance of related flora components, and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size, redundancy analysis, and random forest analysis. RESULTS MT-sDNA was associated with Bacteroides. MT-sDNA and carcinoembryonic antigen (CEA) were positively correlated with the existence of Parabacteroides, and alpha-fetoprotein (AFP) was positively associated with Faecalibacterium and Megamonas. In the random forest model, the existence of Streptococcus, Escherichia, Chitinophaga, Parasutterella, Lachnospira, and Romboutsia can distinguish CRC from health controls. The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%, with a sensitivity and specificity of 98.1% and 92.3%, respectively. CONCLUSION There is a positive correlation of MT-sDNA, CEA, and AFP with intestinal microbiome. Eight biomarkers including six genera of gut microbiota, MT-sDNA, and CEA showed a prominent sensitivity and specificity for CRC prediction, which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.
Collapse
Affiliation(s)
- Jin-Qing Fan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Wang-Fang Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Qi-Wen Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Fu-Rong Zha
- Department of Bioinformation Analysis, Shanghai BIOZERON Biotechnology Co., Shanghai 201800, China
| | - Le-Bin Lv
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Guo-Liang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Han-Lu Gao
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
12
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 252] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Zhu A, Liu Y, Li Z, He Y, Bai L, Wu Y, Zhang Y, Huang Y, Jiang P. Diagnosis and functional prediction of microbial markers in tumor tissues of sporadic colorectal cancer patients associated with the MLH1 protein phenotype. Front Oncol 2023; 12:1116780. [PMID: 36755857 PMCID: PMC9899897 DOI: 10.3389/fonc.2022.1116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Most patients with sporadic colorectal cancer (SCRC) develop microsatellite instability because of defects in mismatch repair (MMR). Moreover, the gut microbiome plays a vital role in the pathogenesis of SCRC. In this study, we assessed the microbial composition and diversity of SCRC tumors with varying MutL protein homolog 1 (MLH1) status, and the effects of functional genes related to bacterial markers and clinical diagnostic prediction. Methods The tumor microbial diversity and composition were profiled using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) software and BugBase tool were used to predict the functional roles of the microbiome. We aimed to construct a high-accuracy model to detect and evaluate the area under the receiver operating characteristic curve with candidate biomarkers. Results The study included 23 patients with negative/defective MLH1 (DM group) and 22 patients with positive/intact MLH1 (IM group). Estimation of alpha diversity indices showed that the Shannon index (p = 0.049) was significantly higher in the DM group than in the controls, while the Simpson index (p = 0.025) was significantly lower. At the genus level, we observed a significant difference in beta diversity in the DM group versus the IM group. Moreover, the abundance of Lachnoclostridium spp. and Coprococcus spp. was significantly more enriched in the DM group than in the IM group (q < 0.01 vs. q < 0.001). When predicting metagenomes, there were 18 Kyoto Encyclopedia of Genes and Genomes pathways and one BugBase function difference in both groups (all q < 0.05). On the basis of the model of diagnostic prediction, we built a simplified optimal model through stepwise selection, consisting of the top two bacterial candidate markers (area under the curve = 0.93). Conclusion In conclusion, the genera Lachnoclostridium and Coprococcus as key species may be crucial biomarkers for non-invasive diagnostic prediction of DM in patients with SCRC in the future.
Collapse
Affiliation(s)
- Anchao Zhu
- Department of Pathology, Harbin First Hospital, Harbin, China
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Zongmin Li
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying He
- Department of Gastroenterology, Harbin First Hospital, Harbin, China
| | - Lijing Bai
- Department of Laboratory Diagnosis, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youtian Wu
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Yuying Zhang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying Huang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ping Jiang
- Department of Pathology, Harbin First Hospital, Harbin, China
| |
Collapse
|
14
|
Wang Z, Dan W, Zhang N, Fang J, Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023; 15:2236364. [PMID: 37482657 PMCID: PMC10364665 DOI: 10.1080/19490976.2023.2236364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide. The incidence and mortality rates of CRC have been increasing in China, possibly due to economic development, lifestyle, and dietary changes. Evidence suggests that gut microbiota plays an essential role in the tumorigenesis of CRC. Gut dysbiosis, specific pathogenic microbes, metabolites, virulence factors, and microbial carcinogenic mechanisms contribute to the initiation and progression of CRC. Gut microbiota biomarkers have potential translational applications in CRC screening and early diagnosis. Gut microbiota-related interventions could improve anti-tumor therapy's efficacy and severe intestinal toxic effects. Chinese researchers have made many achievements in the relationship between gut microbiota and CRC, although some challenges remain. This review summarizes the current evidence from China on the role of gut microbiota in CRC, mainly including the gut microbiota characteristics, especially Fusobacterium nucleatum and Parvimonas micra, which have been identified to be enriched in CRC patients; microbial pathogens such as F. nucleatum and enterotoxigenic Bacteroides fragilis, and P. micra, which Chinese scientists have extensively studied; diagnostic biomarkers especially F. nucleatum; therapeutic effects, including microecological agents represented by certain Lactobacillus strains, fecal microbiota transplantation, and traditional Chinese medicines such as Berberine and Curcumin. More efforts should be focused on exploring the underlying mechanisms of microbial pathogenesis of CRC and providing novel gut microbiota-related therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Zikai Wang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wanyue Dan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School, Nankai University, Tianjin, China
| | - Nana Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|