1
|
Jameson NM, Kim D, Lee C, Skrable B, Shea A, Guo X, Izadi H, Abed M, Harismendy O, Ma J, Kim DS, Lackner MR. The Selective WEE1 Inhibitor Azenosertib Shows Synergistic Antitumor Activity with KRASG12C Inhibitors in Preclinical Models. CANCER RESEARCH COMMUNICATIONS 2025; 5:240-252. [PMID: 39807828 PMCID: PMC11795354 DOI: 10.1158/2767-9764.crc-24-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE Resistance to KRASG12C inhibitors is a growing clinical concern. The synergistic interaction observed between azenosertib and multiple KRASG12C inhibitors could result in deeper and more durable responses.
Collapse
Affiliation(s)
| | - Daehwan Kim
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | - Catherine Lee
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | - Blake Skrable
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | | | - Xiao Guo
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | - Hooman Izadi
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | - Mona Abed
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | | | - Jianhui Ma
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | - Doris S. Kim
- Zentalis Pharmaceuticals, Inc., San Diego, California
| | | |
Collapse
|
2
|
Lakhani NJ, Burris H, Miller WH, Huang M, Chen LC, Siu LL. A phase 1b study of the ERK inhibitor MK-8353 plus pembrolizumab in patients with advanced solid tumors. Invest New Drugs 2024; 42:581-589. [PMID: 39276176 PMCID: PMC11625062 DOI: 10.1007/s10637-024-01461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 09/16/2024]
Abstract
Combining a checkpoint inhibitor with an inhibitor of extracellular signal-regulated kinase (ERK) may result in synergistic antitumor activity. We evaluated MK-8353, an ERK1 and ERK2 inhibitor, plus pembrolizumab in a phase 1b study in patients with advanced solid tumors. This open-label, nonrandomized, dose-escalation study (NCT02972034) enrolled adults with advanced solid tumors previously treated with 1‒5 prior lines of therapy. MK-8353 was administered orally in combination with pembrolizumab 200 mg every 3 weeks as follows: twice daily (arm A; MK-8353 50‒350 mg), once daily (arm B; MK-8353 50‒600 mg), or once daily every other week (arm C; MK-8353 50‒300 mg). The primary objective was evaluation of safety via occurrence of dose-limiting toxicities (DLTs). A secondary objective was objective response by RECIST v1.1 per investigator assessment. Among 110 evaluable patients (arm A, n = 22; arm B, n = 50; arm C, n = 38), median age was 58.0 (range, 35‒79) years and 50% had received 1 or 2 prior lines of therapy. DLTs occurred in 19 patients (n = 6 [27%], n = 8 [16%], and n = 5 [13%], respectively); the most frequent was grade 3 maculopapular rash (n = 15). Grade 3/4 treatment-related AEs occurred in 35% of patients; the most common were maculopapular rash (13%) and increased lipase (5%); none were grade 5. Eight patients (7%) attained an objective response (arm B, n = 7 [complete response, n = 1; partial response, n = 6]; arm C, n = 1 [complete response]). In conclusion, MK-8353 once daily plus pembrolizumab could be administered with a manageable toxicity profile but had modest antitumor activity in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | | | - Wilson H Miller
- Department of Medicine and Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Mo Huang
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - Lillian L Siu
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
3
|
Amarillo D, Flaherty KT, Sullivan RJ. Targeted Therapy Innovations for Melanoma. Hematol Oncol Clin North Am 2024; 38:973-995. [PMID: 38971651 DOI: 10.1016/j.hoc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Melanoma, a malignant tumor of melanocytes, poses a significant clinical challenge due to its aggressive nature and high potential for metastasis. The advent of targeted therapy has revolutionized the treatment landscape of melanoma, particularly for tumors harboring specific genetic alterations such as BRAF V600E mutations. Despite the initial success of targeted agents, resistance inevitably arises, underscoring the need for novel therapeutic strategies. This review explores the latest advances in targeted therapy for melanoma, focusing on new molecular targets, combination therapies, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Dahiana Amarillo
- Oncóloga Médica, Departamento Básico de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Keith T Flaherty
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ryan J Sullivan
- Mass General Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
4
|
Maietta I, Viscusi E, Laudati S, Iannaci G, D’Antonio A, Melillo RM, Motti ML, De Falco V. Targeting the p90RSK/MDM2/p53 Pathway Is Effective in Blocking Tumors with Oncogenic Up-Regulation of the MAPK Pathway Such as Melanoma and Lung Cancer. Cells 2024; 13:1546. [PMID: 39329730 PMCID: PMC11430938 DOI: 10.3390/cells13181546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
In most human tumors, the MAPK pathway is constitutively activated. Since p90RSK is downstream of MAPK, it is often hyperactive and capable of phosphorylating oncogenic substrates. We have previously shown that p90RSK phosphorylates MDM2 at S166, promoting p53 degradation in follicular thyroid carcinomas. Thus, the inhibition of p90RSK restores p53 expression, which in turn inhibits cell proliferation and promotes apoptosis. In the present study, we demonstrated that the p90RSK/MDM2/p53 pathway proved to be an excellent target in the therapy of tumors with MAPK hyperactivation. For this purpose, we selected p53wt melanoma, lung and medullary thyroid carcinoma cell lines with high activation of p90RSK. In these cell lines, we demonstrated that the p90RSK/MDM2/p53 pathway is implicated in the regulation of the cell cycle and apoptosis through p53-dependent transcriptional control of p21 and Bcl-2. Furthermore, with an immunohistochemical evaluation of primary melanomas and lung tumors, which exhibit highly activated p90RSK compared to corresponding normal tissue, we demonstrated that MDM2 stabilization was associated with p90RSK phosphorylation. The results indicate that p90RSK is able to control the proliferative rate and induction of apoptosis through the regulation of p53wt levels by stabilizing MDM2 in selected tumors with constitutively activated MAPKs, making p90RSK a new attractive target for anticancer therapy.
Collapse
Affiliation(s)
- Immacolata Maietta
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| | - Eleonora Viscusi
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Stefano Laudati
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Giuseppe Iannaci
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Antonio D’Antonio
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Rosa Marina Melillo
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Letizia Motti
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| |
Collapse
|
5
|
Na B, Shah SR, Vasudevan HN. Past, Present, and Future Therapeutic Strategies for NF-1-Associated Tumors. Curr Oncol Rep 2024; 26:706-713. [PMID: 38709422 PMCID: PMC11169015 DOI: 10.1007/s11912-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE OF REVIEW Neurofibromatosis type 1 (NF-1) is a cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene that encodes the neurofibromin protein, which functions as a negative regulator of Ras signaling. We review the past, current, and future state of therapeutic strategies for tumors associated with NF-1. RECENT FINDINGS Therapeutic efforts for NF-1-associated tumors have centered around inhibiting Ras output, leading to the clinical success of downstream MEK inhibition for plexiform neurofibromas and low-grade gliomas. However, MEK inhibition and similar molecular monotherapy approaches that block Ras signaling do not work for all patients and show limited efficacy for more aggressive cancers such as malignant peripheral nerve sheath tumors and high-grade gliomas, motivating novel treatment approaches. We highlight the current therapeutic landscape for NF-1-associated tumors, broadly categorizing treatment into past strategies for serial Ras pathway blockade, current approaches targeting parallel oncogenic and tumor suppressor pathways, and future avenues of investigation leveraging biologic and technical innovations in immunotherapy, pharmacology, and gene delivery.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA Neuro-Oncology Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp R Shah
- Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
9
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|