1
|
Does environmental pollution affect male reproductive system in naturally exposed vertebrates? A systematic review. Theriogenology 2023; 198:305-316. [PMID: 36634444 DOI: 10.1016/j.theriogenology.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.
Collapse
|
2
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
3
|
Mohammadi S, Rahmani F, Hasanian SM, Beheshti F, Akbari Oryani M, Ebrahimzadeh A, Farzadfar S. Effects of dioxin on testicular histopathology, sperm parameters, and CatSper2 gene and protein expression in Naval Medical Research Institute male mice. Andrologia 2019; 51:e13411. [PMID: 31599008 DOI: 10.1111/and.13411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
The CatSper gene family is known to be solely expressed in sperm cells and is possibly associated with sperm motility and penetration through the zona pellucida. Despite its vital role in male fertility, factors regulating its expression are not widely known. The present study aimed at evaluating the effects of dioxin on CatSper2 gene and protein expression, testicular histopathology, sperm quality and biochemical parameters in a mice model. The experiments were performed on 32 Naval Medical Research Institute male mice (2-3 months). The animals were divided into four groups in a random manner: (a) control; (b) dioxin 1; (c) dioxin 2; and (d) dioxin 3. The treatment groups received 0.1, 0.5 and 1 µg/kg of dioxin intraperitoneally every day for 2 weeks. Administration of dioxin significantly downregulated the CatSper2 gene and protein expression. A greater reduction in gene and protein expression was found at higher doses of dioxin. At the same time, sperm parameters, especially sperm motility and count, decreased in mice exposed to dioxin. The results of testicular histopathology showed necrotic degeneration and epithelium thickness reduction in the dioxin groups in comparison with the controls. Besides, oxidative stress increased in seminiferous tubules.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mehdi Hasanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokofeh Farzadfar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Lee JM, Lee BH, Chang SN, Oh H, Ryu B, Kim U, Park JH. Establishment, characterization, and toxicological application of a spontaneous immortalized cell line from the striped field mouse, Apodemus agrarius. In Vitro Cell Dev Biol Anim 2018; 54:779-787. [PMID: 30306320 DOI: 10.1007/s11626-018-0290-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
It is important to secure various biological resources in situations of diminishing wildlife genetic diversity. Cultured cells are useful bioresources because they can stably store genetic information for a long time and can be expanded efficiently. Here, we established fibroblast cell lines from Apodemus agrarius as a new living resource. A. agrarius is an important sub-predator species in ecosystem food chains and for the study of infection epidemiology. Established cell lines were characterized by chromosome and mitochondrial gene analysis, the observation of cell morphology, and their anchorage-dependent growth pattern. We also examined susceptibility to endocrine disruptors (EDCs), which threaten biodiversity, using these established cell lines. Nonylphenol (NP) is a well-known EDC that threatens wildlife; however, its impact is poorly understood. Sensitivity to NP was confirmed based on two cell viability assays, namely MTT and lactate dehydrogenase. Cells exposed to NP were analyzed for abnormalities in cell growth and mitochondrial function by evaluating the expression of genes (specifically, those encoding growth hormone receptor and cytochrome C oxidase). This newly established cell line represents a valuable tool for the evaluation of toxic substances such as EDCs and this cell was biobanked for study about relationship between various environmental pollution and decreasing biodiversity.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Ariyoshi K, Miura T, Kasai K, Akifumi N, Fujishima Y, Yoshida MA. Radiation-induced bystander effect in large Japanese field mouse (Apodemus speciosus) embryonic cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:223-231. [PMID: 29785486 DOI: 10.1007/s00411-018-0743-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Although evidence suggests that ionizing radiation can induce the bystander effect (radiation-induced bystander effect: RIBE) in cultured cells or mouse models, it is unclear whether the effect occurs in cells of wild animals. We investigated medium-mediated bystander micronucleus (MN) formation and DNA damage in un-irradiated cells from a large Japanese field mouse (Apodemus speciosus). We isolated four clones of A. speciosus embryonic fibroblasts (A603-1, A603-2, A603-3, and A603-4) derived from the same mother, and examined their radiation sensitivity using the colony-forming assay. A603-3 and A603-4 were similar, and A603-1 and A603-2 were highly sensitive compared with A603-3 and A603-4. We examined RIBE in the four clones in autologous medium from cell cultures exposed to 2 Gy X-ray radiation (irradiated cell conditioned medium: ICCM). We only observed increased MN prevalence and induction of DNA damage foci in A603-1 and A603-3 cells after ICCM transfer. The ICCM of A603-3 (RIBE-induced) was able to induce MN in A603-4 (not RIBE-induced). To assess the possible contribution of reactive oxygen species (ROS) or nitric oxide (NO) in medium-mediated RIBE, dimethyl sulfoxide (DMSO; a ROS scavenger) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; an NO scavenger) were added to the medium. A suppressive effect was observed after adding DMSO, but there was no effect after treatment with c-PTIO. These results suggest that an enhanced radiosensitivity may not be directly related to the induction of medium-mediated RIBE. Moreover, ROS are involved in the transduction of the RIBE signal in A. speciosus cells, but NO is not. In conclusion, our results suggest that RIBE may be conserved in wild animals. The results contribute to better knowledge of radiation effects on wild, non-human species.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| | - Tomisato Miura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Nakata Akifumi
- Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido, 047-0264, Japan
| | - Yohei Fujishima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
6
|
Rehman S, Usman Z, Rehman S, AlDraihem M, Rehman N, Rehman I, Ahmad G. Endocrine disrupting chemicals and impact on male reproductive health. Transl Androl Urol 2018; 7:490-503. [PMID: 30050807 PMCID: PMC6043754 DOI: 10.21037/tau.2018.05.17] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) have been known to adversely affect the endocrine system leading to compromised functions of hormones. The presence of these compounds in everyday products such as canned food, water bottles, plastics, cosmetics, fertilizers, kid’s toys and many others goods is a greater concern for general population. The persistent and long-term use of EDCs has deleterious effects on human reproductive health by interfering with the synthesis and mechanism of action of sex hormones. Any change during the synthesis or action of the sex hormones may result in abnormal reproductive functions which includes developmental anomalies in the reproductive tract and decline in semen quality. The present paper provides an overview of the EDCs and their possible impact on male reproductive health with major focus on semen quality which leads to male infertility.
Collapse
Affiliation(s)
- Saba Rehman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zeenat Usman
- Department of Physiology, University of Health Sciences, Lahore, Pakistan
| | - Sabeen Rehman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Noor Rehman
- Department of Biological Sciences, Binghamton University, NY, USA
| | - Ibraheem Rehman
- Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Gulfam Ahmad
- Department of Physiology, University of Health Sciences, Lahore, Pakistan.,Human Reproduction Unit, Kolling Institute, Sydney Medical School, Sydney University, Sydney, Australia
| |
Collapse
|
7
|
Relationship between serum dioxin-like polychlorinated biphenyls and post-testicular maturation in human sperm. Reprod Toxicol 2017; 73:312-321. [DOI: 10.1016/j.reprotox.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 02/02/2023]
|
8
|
Okano T, Onuma M, Ishiniwa H, Azuma N, Tamaoki M, Nakajima N, Shindo J, Yokohata Y. Classification of the spermatogenic cycle, seasonal changes of seminiferous tubule morphology and estimation of the breeding season of the large Japanese field mouse (Apodemus speciosus) in Toyama and Aomori prefectures, Japan. J Vet Med Sci 2015; 77:799-807. [PMID: 25754934 PMCID: PMC4527501 DOI: 10.1292/jvms.14-0411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The large Japanese field mouse, Apodemus speciosus, is a potential indicator of environmental stress, but this function has not been confirmed by histological studies. Since environmental stress affects the reproductive function of mice, we determined the reproductive characteristics of this species at two locations: Toyama (36°35'N, 137°24'E) and Aomori (40°35'N, 140°57'E). Mice were captured during May-November (n=119) and July-November (n=146) at these locations, respectively. We classified the breeding season from the numbers of pregnant females and young, in addition to the spermatogenic cycle and seasonal changes in seminiferous tubule morphology of males. Testicular weight was measured, and seminiferous tubule morphology was examined histologically. Fourteen stages were found in the seminiferous epithelium cycle based on acrosome formation and spermatid head morphology. At both locations, the breeding season peaked from late summer to early autumn and possibly in spring. Spermatogenic activity was classified into 4 periods from June to November: resting around June and October-November; resumptive around July; active around August; and degenerative around September. During the resting period, the seminiferous tubules consisted of Sertoli cells, spermatogonia and spermatocytes. Spermatogenesis began during the resumptive period, and spermatids were observed. During the active period, active spermatogenesis and a broad lumen were observed. During the degenerative period, spermatogenesis ended, and Sertoli cells, spermatogonia, spermatocytes and degenerating exfoliated round spermatids were observed. This study provides scientific information about the testicular histopathological evaluations of the large Japanese field mouse for its use as an index species of environmental pollution.
Collapse
Affiliation(s)
- Tsukasa Okano
- Ecological Genetics Analysis Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Manzetti S, van der Spoel ER, van der Spoel D. Chemical Properties, Environmental Fate, and Degradation of Seven Classes of Pollutants. Chem Res Toxicol 2014; 27:713-37. [DOI: 10.1021/tx500014w] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sergio Manzetti
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
- Fjordforsk A.S., Midtun, 6894 Vangsnes, Norway
| | - E. Roos van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|