1
|
Alias C, Cioli F, Abbà A, Feretti D, Sorlini S. Ecotoxicological assessment of waste foundry sands and the application of different classification systems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2294-2311. [PMID: 39212266 DOI: 10.1002/ieam.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
The application of a battery of bioassays is widely recognized as a useful tool for assessing environmental hazard samples. However, the integration of different toxicity data is a key aspect of this assessment and remains a challenge. The evaluation of industrial waste leachates did not initially undergo any of the proposed integration procedures. This research addressed this knowledge gap. Twenty-five samples of waste foundry sands were subjected to a leaching test (UNI EN 12457-2) to evaluate waste recovery and landfill disposal. The leachates were evaluated using a battery of standardized toxicity bioassays composed of Aliivibrio fischeri (EN ISO 11348-3), Daphnia magna (UNI EN ISO 6341), and Pseudokirchneriella subcapitata (UNI EN ISO 8692), both undiluted and diluted. Daphnia magna and P. subcapitata were the most affected organisms, with significant effects caused by 68% and 64% of undiluted samples, respectively. The dilution of samples facilitates the calculation of EC50 values, which ranged from greater than the highest concentration tested to 2.5 g/L for P. subcapitata. The data on single-organism toxicity were integrated using three methods: the Toxicity Classification System, the toxicity test battery integrated index, and the EcoScore system. The three classifications were strongly similar. According to all applied systems, three samples were clearly nontoxic (from iron casting plants) and two were highly toxic (from steel casting plants). Moreover, the similar ranking between undiluted and diluted leachates suggests the possibility of using only undiluted leachates for a more cost-effective and time-efficient screening of waste materials. The findings of this study highlight the usefulness of integrating ecotoxicological waste assessment. Integr Environ Assess Manag 2024;20:2294-2311. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carlotta Alias
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Flavio Cioli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Alessandro Abbà
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sabrina Sorlini
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Zhou L, Wu F, Ou P, Li H, Zhuang WQ. Non-electroactive bacteria behave variously in AnMBR biofilm control using electric field. WATER RESEARCH 2024; 268:122646. [PMID: 39432995 DOI: 10.1016/j.watres.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Electroactive bacteria are often regarded as key players responding to electric fields that are used to control biofilm development during AnMBR (anaerobic membrane bioreactor) operation. Consequently, little attention has been given to non-electroactive bacteria in the same systems because of their incapability to acquire and transfer electrons directly. However, in this study, we identified some functionally important non-electroactive bacteria from biofilm established under low-voltage (0, 0.3, 0.5 and 1 V) electric fields in AnMBRs, designated as E-AnMBRs in this study. During the whole experiment, non-electroactive bacteria, mainly belonging to Proteobacteria, Bacteroidetes, and Chloroflexi, were found in all biofilm samples taken from each E-AnMBR. Under 0.3 V and 1 V conditions, non-electroactive bacteria did not seem to contribute to the development of biofilm significantly. Whereas under 0.5 V conditions, the growth of non-electroactive bacteria contributed up to 0.61 kPa/day biofilm formation. Therefore, 0.5 V was identified as a critical voltage, leading to the most severe biofilm formation. The microbial community structure in the reactor with a 0.5 V electric field was distinctly unique, caused by the increase of non-electroactive bacterial activity and the upregulation of their metabolic pathways. Notably, functional genes involved in carbon metabolism and oxidative phosphorylation pathway were upregulated. Furthermore, the 0.5 V electric field enhanced the protein/polysaccharide ratio and increased zeta potential to 31.6 mV (p < 0.01) of the biofilm samples. This was because upregulating quorum sensing genes accelerated the coordinated gene regulations and functional activities among non-electroactive bacteria.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Mehta V. Sustainable approaches in concrete production: An in-depth review of waste foundry sand utilization and environmental considerations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23435-23461. [PMID: 38462563 DOI: 10.1007/s11356-024-32785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
This review critically evaluates the potential of Waste Foundry Sand (WFS) as a substitute for fine aggregate in concrete, conducting a comparative analysis of its physical and chemical properties against those of natural sand. The study synthesizes findings from various research experiments to determine concrete's most effective WFS replacement percentage. It compiles and analyzes data on how different WFS ratios affect concrete's mechanical properties, including modulus of elasticity and compressive strength. The review also consolidates research on the impact of WFS on concrete's workability, density, and flowability. A key finding is that WFS, categorized as a non-hazardous waste, possesses a diverse particle size distribution, rendering it suitable for recycling in various industrial applications.The study identifies that a 20%-30% replacement of WFS in concrete significantly improves properties such as voids, specific gravity, and density. However, it is essential to note that exceeding a 30% WFS replacement can result in increased carbonation depth and decreased resistance, primarily due to sulfur trioxide (SO3). Further observations indicate that incorporating higher levels of WFS in self-compacting concrete reduces its flowability and increases water permeability. Moreover, the review highlights the regulatory and classification challenges associated with using WFS, particularly its classification as waste, which hampers its widespread adoption in construction. In conclusion, the study recommends implementing End-of-Waste (EoW) regulations to facilitate sustainable recycling and environmental protection. Additionally, it includes a bibliometric analysis of foundry sand research spanning from 1971 to 2020, providing a comprehensive summary of the field's historical and recent developments.
Collapse
Affiliation(s)
- Vikas Mehta
- Research Scholar, Department of Civil Engineering, Keimyung University, Daegu, South Korea.
| |
Collapse
|
4
|
Reuse or Disposal of Waste Foundry Sand: An Insight into Environmental Aspects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
From a circular economy perspective, the recovery and reuse of waste plays a fundamental role. Foundries purchase hundreds of millions of siliceous sands every year to create molds and cores that give shape to the casting. These sands, after several uses, become waste that must be properly recovered or disposed of; they are called waste foundry sands (WFS). The reuse of WFS leads to a reduction in: (i) the consumption of raw materials; (ii) the emissions into the atmosphere; and (iii) the amount of waste sent to landfill—on the other hand, the impact that their use generates on the environment and human health must be carefully assessed. Leaching tests are a fundamental tool for establishing the hazardousness of a waste and its release of contaminants into the environment. This paper presents an analysis of the scientific literature regarding the chemical characteristics of WFS and their release following leaching tests carried out in the laboratory; the environmental standards adopted by the countries that have issued guidelines regarding the reuse of WFS will also be presented.
Collapse
|
5
|
Bożym M. Assessment of phytotoxicity of leachates from landfilled waste and dust from foundry. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:429-443. [PMID: 32291613 PMCID: PMC7182548 DOI: 10.1007/s10646-020-02197-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
The study assesses the contamination, classification and phytotoxicity of foundry waste. The presented results are a part of the research on the agrotechnical use of foundry waste. Landfilled foundry waste (LFW) and dust samples were taken from one of the Polish foundries. An analysis of the waste and its leachate composition was conducted. Phytotoxicity tests were carried out using Lepidium sativum. The aim of the phytotoxicity study was to evaluate germination and root growth after 72 h and the accumulation of heavy metals after 7 days. LFW was least contaminated with heavy metals and metalloids compared to dust. The composition of the foundry dusts depended on the unit of the foundry, from which it was collected. It was found that electric arc furnace dust (EAFD) was the most polluted by heavy metals among the dust samples. According to the requirements of Polish regulations most of tested waste were classified as non-hazardous, and EAFD as hazardous waste due to high Pb concentration in leachate. Phytotoxicity tests have shown a low phytotoxicity of the leachate from most of the tested waste. The results of the accumulation test showed that an excess of metal and metalloids in leachate was not directly related to its accumulation in plants. A negative correlation between EC, Cu, Co, Fe, Pb, Cr, K, Na, sulfate, fluoride, ammonia, phenol and formaldehyde concentration in leachate and GI was found. It was stated that the Fe, Mn, As and Se in plants was significantly correlated with concentrations in leachate.
Collapse
Affiliation(s)
- Marta Bożym
- Opole University of Technology, Prószkowska 76 Street, Opole, 45-758, Poland.
| |
Collapse
|
6
|
Kayumov AR, Solovyev DA, Bobrov DE, Rizvanov AA. Current Approaches to the Evaluation of Soil Genotoxicity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Dongxing Z, Yucui N, Congmin J, Liyan L, Xiaoli P, Xu C. Correlation of the oxidative stress indices and Cd exposure using a mathematical model in the earthworm, Eisenia fetida. CHEMOSPHERE 2019; 216:157-167. [PMID: 30366269 DOI: 10.1016/j.chemosphere.2018.10.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
With the increase in heavy metal pollution, it is of great significance to evaluate the ecological security and early warning of cadmium (Cd) contaminated soil. In this paper, a mathematical model was established for the first time by combining the advantages of the factor analysis method and the analytic hierarchy process, and was used to screen and analyze the ecological indices of oxidative stress in earthworms under Cd exposure. The experiment lasted for 40 days, removing one earthworm every 10 days. The Cd2+ concentration gradient was set at 0, 1, 10, 20, 100, 200, 400 and 800 mg kg-1. The ecological indices measured were total protein (TP), peroxidase (POD), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST), catalase (CAT), acetylcholinesterase (AChE) and malondialdehyde (MDA) levels. The results showed that when the earthworm was exposed to Cd2+ for 10 days and 30 days, in the head tissues, the key indices to focus on for monitoring were both POD. At 20 days and 40 days, the key indices were both TP. For the tail tissue tests, under Cd exposure for 10 days, the key indicator focused on for monitoring was MDA. After 20 days of exposure, the key monitoring indicator was AChE. At 30 days, it was CAT, and at 40 days, it was TP. This study provides a theoretical basis for the prompt, inexpensive, accurate and scientific early warning of metal contaminated soils and establishes a foundation for application of the screening model for other ecological indicators.
Collapse
Affiliation(s)
- Zhou Dongxing
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ning Yucui
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jin Congmin
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Liyan
- Publicity and United Front Work Department, Northeast Agricultural University, Harbin, 150030, China.
| | - Pan Xiaoli
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China; College of Physics Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Cao Xu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150030, China
| |
Collapse
|