1
|
Singh V, Srivastava S, Singh N, Srivastava S, Lehri A, Singh N. Study on the characterization of endosulfan-degrading bacterial strains isolated from contaminated rhizospheric soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:68-85. [PMID: 35895931 DOI: 10.1080/26896583.2022.2050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, we have isolated endosulfan tolerant bacterial strains from the rhizosphere of plants growing in a pesticide-contaminated area. The tolerance capacities of these strains were tested up to 50,000 µg ml-1 of endosulfan. It was found that out of nineteen, four strains (EAG-EC-12, EAG-EC-13, EAG-EC-14, and EAG-EC-15) were capable of surviving up to 50,000 µg ml-1 endosulfan concentration in the media; thus, these four strains were selected for the characterization. Among four, two strains were identified as Serratia liquefaciens, while the other two strains were Bacillus sp. and Brevibacterium halotolerans. The result shows that growth of strain Serratia liquefaciens 1 and Serratia liquefaciens 2 in treated medium was statistically similar to that of control (cfu 6.8 × 107) after 24 h, while strains Bacillus sp. and Brevibacterium halotolerans have shown growth significantly less than the control. The degradation potential of these strains was analyzed against 100 to 250 µg ml-1 of endosulfan in a Minimal Broth Medium (MBM), and it was recorded that only 9, 2, 7, and 19% of endosulfan (100 µg ml-1) remain after a 72 h incubation period of Bacillus sp., Serratia liquefaciens 1, Serratia liquefaciens 2, and Brevibacterium halotolerans, respectively. This endosulfan removal potential of studied strains was decreased with an increase in concentration of endosulfan.
Collapse
Affiliation(s)
- Vandana Singh
- Central Instrumentation Facility, National Botanical Research Institute, Lucknow, India
| | | | - Namrata Singh
- Eco Auditing Group, National Botanical Research Institute, Lucknow, India
| | - Suchi Srivastava
- Division of Plant Microbe Interaction, National Botanical Research Institute, Lucknow, India
| | - Alok Lehri
- Central Instrumentation Facility, National Botanical Research Institute, Lucknow, India
| | - Nandita Singh
- Eco Auditing Group, National Botanical Research Institute, Lucknow, India
| |
Collapse
|
2
|
Kong L, Zhang Y, Zhu L, Wang J, Wang J, Du Z, Zhang C. Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan- contaminated soil toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:75-83. [PMID: 29793204 DOI: 10.1016/j.ecoenv.2018.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/22/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
The recently discovered endosulfan-degrading bacterial strains Pusillimonas sp. JW2 and Bordetella petrii NS were isolated from endosulfan-polluted water and soil environments. The optimal conditions for the growth and biodegradation activity of the strains JW2 and NS were studied in detail. In addition, the ability of the strains JW2 and NS to biodegrade endosulfan in soils during in situ bioremediation experiments was investigated. At a concentration of 2 mg of endosulfan per kilogram of soil, both JW2 and NS had positive effects on the degradation of endosulfan; JW2 degraded 100% and 91.5% of α- and β-endosulfan, respectively, and NS degraded 95.1% and 90.3% of α- and β-endosulfan, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of soil samples showed the successful colonization of JW2 and NS, and the toxicity of the soil decreased, as determined by single-cell gel electrophoresis (SCGE) assays of Eiseniafetida and micronucleus (MN) assays of Viciafaba root tip cells. Furthermore, the metabolic products of the bacterially degraded endosulfan from the in situ experiments were identified as endosulfan ether and lactone. This study provided potentially foundational backgrounds information for the remediation of endosulfan-contaminated soil.
Collapse
Affiliation(s)
- Lingfen Kong
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yu Zhang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Zhongkun Du
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Zhang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1582-1599. [PMID: 30045575 DOI: 10.1016/j.scitotenv.2018.02.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Environmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability. This raises the call to employ biological methods for remediation. Bioremediation and microbe-assisted bioremediation (phytoremediation) offer many ecological and cost-associated benefits. The overall efficiency and performance of bio- and phytoremediation approaches can be enhanced by genetically modified microbes and plants. Moreover, phytoremediation can also be stimulated by suitable plant-microbe partnerships, i.e. plant-endophytic or plant-rhizospheric associations. Synergistic interactions between recombinant bacteria and genetically modified plants can further enhance the restoration of environments impacted by organic pollutants. Nevertheless, releasing genetically modified microbes and plants into the environment does pose potential risks. These can be minimized by adopting environmental biotechnological techniques and guidelines provided by environmental protection agencies and other regulatory frameworks. The current contribution provides a comprehensive overview on enhanced bioremediation and phytoremediation approaches using transgenic plants and microbes. It also sheds light on the mitigation of associated environmental risks.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria; Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Austria
| | - Gajender Aleti
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shahida Shaheen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Park Road Tarlai Kalan 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
4
|
Hwang JI, Zimmerman AR, Kim JE. Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:514-522. [PMID: 29426174 DOI: 10.1016/j.scitotenv.2018.01.208] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Uptake characteristics of endosulfan (ED), including α-, β-isomers and sulfate-metabolites, from the soils by carrot and potato plants were investigated to establish a method that may be used to calculate recommended permissible soil contaminant concentrations (Cs, permissible) at time of planting so that maximum residue level (MRL) standards are not exceeded. The residues of ED were analyzed in soils treated with ED at concentrations of either 2 or 10 mg kg soil-1 and in the plants (carrots and potatoes) grown in such soils for 60-90 d. Presence of plants increased ED dissipation rates in soils in patterns that were best fit to a double-exponential decay model (R2 of 0.84-0.99). The ED uptake extent varied with type of crop, ED isomer, plant growth duration, and plant compartments. However, ED concentrations in all edible parts of crops eventually exceeded their maximum residue limits. Total ED bioconcentration factor (BCF), the ratio of soil ED concentration at planting time to that in edible part of each crop at harvest day, was found to decrease with time due to decreasing soil ED concentration and increasing plant biomass in a pattern that followed a first order kinetic model. Using this model, the Cs, permissible values, specific to the soils used in this study, were calculated to be 0.32 and 0.19 mg kg soil-1 for carrots and potatoes, respectively. The results and methods developed in this study may be utilized as a prediction tool to ensure crop safety from pesticide residues.
Collapse
Affiliation(s)
- Jeong-In Hwang
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jang-Eok Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
A Review on Bioremediation Potential of Vetiver Grass. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7413-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|