1
|
Pedroso-Roussado C, Pestana M, Dias R, Nunes M, Pascoal P, Pereira M, Nunes N. Tagus River microbial profile through nanopore sequencing on samples gathered from Prainha do Braco de Prata, Lisbon. OPEN RESEARCH EUROPE 2024; 4:155. [PMID: 40271382 PMCID: PMC12015429 DOI: 10.12688/openreseurope.18072.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 04/25/2025]
Abstract
Background Freshwater ecosystems play a vital role for hosting life, and their study can elucidate their dynamic state throughout time. However, there is not much knowledge about the microbial profiles and their relevance for the ecosystem balance is still unclear. Methods In this Brief Report three freshwater samples collected in the Tagus River north margin were analysed through 16S-targeted nanopore sequencing and by customized bioinformatics pipeline. Results Our results revealed a consensual microbial profile with Candidatus Pelagibacter, Egibacter, and Ralstonia as the most abundant genera. Additionally, through a literature review we found that the ecosystem services provided by these genera are mostly related to organic matter decomposition. Conclusions Despite the need for a more robust sampling and analyses, we conclude that there is potential to use microbial profile approaches to help define the relevant microbial biomarkers to clarify the ecosystem services in the Tagus River freshwater ecosystem.
Collapse
Affiliation(s)
| | - Mariana Pestana
- ITI/LARSyS, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal
| | - Ricardo Dias
- BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Mónica Nunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Pedro Pascoal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Marcelo Pereira
- BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Nuno Nunes
- ITI/LARSyS, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal
| |
Collapse
|
2
|
Liu M, Yin F, Zhao W, Tian P, Zhou Y, Jia Z, Huang K, Ding Y, Xiao J, Niu W, Wang X. Diversity of Culturable Bacteria from the Coral Reef Areas in the South China Sea and Their Agar-Degrading Abilities. Microorganisms 2024; 12:187. [PMID: 38258013 PMCID: PMC10818321 DOI: 10.3390/microorganisms12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.
Collapse
Affiliation(s)
- Mei Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Fu Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Wenbin Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Yi Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Zhiyu Jia
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunqi Ding
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
3
|
Sun F, Wang Y, Wang Y, Sun C, Cheng H, Wu M. Insights into the spatial distributions of bacteria, archaea, ammonia-oxidizing bacteria and archaea communities in sediments of Daya Bay, northern South China Sea. MARINE POLLUTION BULLETIN 2024; 198:115850. [PMID: 38029671 DOI: 10.1016/j.marpolbul.2023.115850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Yutu Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Meilin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|