1
|
Gao Y, Sun X, Zhou Y, Pan S. Differences in the accumulation of pentachloronitrobenzene and cadmium in vegetables grown in contaminated soils. ENVIRONMENTAL RESEARCH 2024; 263:120119. [PMID: 39389200 DOI: 10.1016/j.envres.2024.120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The capability of different vegetable species to accumulate Pentachloronitrobenzene (PCNB) and cadmium (Cd) in soils varies significantly. Investigating these characteristics can guide the rational use of farmland contaminated with PCNB and Cd. The growth of five common vegetables (three vegetable species and three varieties of one species) in PCNB and Cd co-contaminated soils in Southwest China was investigated through a 100-day simulated contamination pot experiment. Interspecific and intervariety differences in the uptake and accumulation of PCNB and Cd were also examined. These vegetables included leafy types such as Lactuca sativa (CL), Lactuca sativa var. longifolia (RL), and Brassica rapa subsp. chinensis (BC), and root types such as Red Raphanus sativus (RR) and Lactuca sativa var. angustata (AL). Results showed that light to medium PCNB contamination (0.44-6.74 mg kg-1) promoted the growth of leafy vegetables, while severe contamination (9.88-9.96 mg kg-1) inhibited their growth. Root vegetables were inhibited by PCNB. Soil Cd contamination reduced the biomass of all five vegetables. In co-contamination soil (PCNB: 0.47-9.88 mg kg-1; Cd: 0.46-1.63 mg kg-1), vegetable growth was affected by the interaction between PCNB and Cd. In severely PCNB-contaminated soil, PCNB contents of CL, RL, BC, and AL leaves exceeded food safety limits, while those in RR and AL stems did not. The five vegetables showed varying Cd contamination, with AL leaves being the most contaminated, exceeding the standard by 60 times. PCNB accumulation followed the order: AL leaves > BC > AL stems > RL > CL > RR. Cd accumulation was highest in AL leaves, followed by stems, RR, BC, CL, and lowest in RL, with significant differences (P < 0.05). Co-contaminated soil did not promote PCNB and Cd uptake in vegetables. CL and RL, with low PCNB and Cd accumulation capacities, could be considered low-accumulation varieties for lightly contaminated soils.
Collapse
Affiliation(s)
- Yang Gao
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Xin Sun
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Yuxiao Zhou
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Shengwang Pan
- Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
2
|
Yang W, Fang Q, Lv H, Zhang G, Ni J, Lin Z. Electrolytic growth of phenyl-modified silica isoporous membrane for non-polar extraction and electrochemical detection of pentachloronitrobenzene. Mikrochim Acta 2024; 191:625. [PMID: 39322848 DOI: 10.1007/s00604-024-06719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
A phenyl-modified silica isoporous membrane (Ph-SIM) was prepared on the indium-tin-oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. The resulting Ph-SIM preserved vertically ordered nanochannels while exhibiting outstanding hydrophobicity due to the incorporation of phenyl groups within the nanochannels. As a result, the Ph-SIM/ITO sensor exhibited a remarkable affinity for PCNB extraction through hydrophobic interactions, leading to high detection sensitivity. The electrochemical response showed a linear enhancement with the logarithmic concentration of PCNB ranging from 0.1 to 20.0 µM, and the limit of detection was 4.64 nM. Practical results demonstrated that the Ph-SIM/ITO sensor possessed good anti-fouling capability and robust stability, making it a promising candidate for portable detection of non-polar contaminants.
Collapse
Affiliation(s)
- Weiqiang Yang
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, P. R. China
| | - Qiaoling Fang
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, P. R. China
| | - Haiming Lv
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, P. R. China
| | - Guiyun Zhang
- Fujian Provincial Collaborative Innovation Institute of Food Industry Technology, Zhangzhou Institute of Technology, Zhangzhou, 363000, China
| | - Jiancong Ni
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, P. R. China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
3
|
Gao X, Dan Q, Zhang C, Ding R, Gao E, Luo H, Liu W, Lu C. Pentachloronitrobenzene disturbed murine ventricular wall development by inhibiting cardiomyocyte proliferation via Hec1 downregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168917. [PMID: 38030013 DOI: 10.1016/j.scitotenv.2023.168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Exposure to the organochlorine fungicide pentachloronitrobenzene (PCNB) causes developmental abnormalities, including cardiac malformation. However, the molecular mechanism of PCNB cardiotoxicity remains elusive. We found that oral administration of PCNB to pregnant mice induced a hypoplastic wall with significant thinning of the compact myocardium in the developing hearts. PCNB significantly downregulates the expression of Hec1, a member of the NDC80 kinetochore complex, resulting in aberrant spindles, chromosome missegregation and an arrest in cardiomyocyte proliferation. Cardiac-specific ablation of Hec1 sharply inhibits cardiomyocyte proliferation, leading to thinning of the compact myocardium and embryonic lethality. Mechanistically, we found that activating transcription factor 3 (ATF3) transactivates Hec1 expression. Either HEC1 or ATF3 overexpression significantly rescues mitotic defects and restore the decreased proliferative ability of cardiomyocytes caused by PCNB exposure. Our findings highlight that maternal PCNB exposure disrupts embryonic cardiac function by inhibiting cardiomyocyte proliferation and interfering with ventricular wall development, partially attributed to the downregulation of the Atf3-Hec1 axis.
Collapse
Affiliation(s)
- Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruqian Ding
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Ismail T, Lee H, Kim Y, Ryu HY, Cho DH, Ryoo ZY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS. PCNB exposure during early embryogenic development induces developmental delay and teratogenicity by altering the gene expression in Xenopus laevis. ENVIRONMENTAL TOXICOLOGY 2023; 38:216-224. [PMID: 36218123 DOI: 10.1002/tox.23679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hong-Yeoul Ryu
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Zae Young Ryoo
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
6
|
Neng J, Liao C, Wang Y, Wang Y, Yang K. Rapid and Sensitive Detection of Pentachloronitrobenzene by Surface-Enhanced Raman Spectroscopy Combined with Molecularly Imprinted Polymers. BIOSENSORS 2022; 12:bios12020052. [PMID: 35200313 PMCID: PMC8869095 DOI: 10.3390/bios12020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Molecularly imprinted polymers (MIPs) specifically targeting pentachloronitrobenzene (PCNB) and containing silver nanoparticles have been prepared by free radical polymerization reaction using methyl methacrylate (MMA) as a functional monomer, PCNB as a template molecule, 1,4-butanedioldimethacrylate as a cross linker, lauroyl peroxide (LPO) as an initiator, and the silver nanoparticles with the best surface-enhanced Raman scattering (SERS) effect as SERS enhancement materials. Our results indicated that MIPs specifically recognize PCNB from complex matrices. The intensity of the PCNB characteristic peak was proportional to the concentration, with a linear range of 0.005 to 0.15 μg/mL and a limit of detection of 5.0 ng/mL. The recovery rates and relative standard deviation for the detection of PCNB spiked in the rice samples were from 94.4% to 103.3% and from 4.6% to 7.4%, respectively. The experimental results are consistent with those by the GC-MS method, indicating that the rapid detection of PCNB in food matrices by SERS-MIPs is reliable. In view of the insolubility of PCNB in water, oil-soluble silver nanoparticles were synthesized which can be expanded to detect oil-soluble toxic substances. For the first time, the proposed method provides a point-of-care and cost-effective tool for rapidly detecting PCNB in food matrices with high sensitivity and selectivity by employing SERS-MIPs method.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Correspondence: ; Tel.: +86-572-8813-778
| |
Collapse
|
7
|
Li M, Xu G, Guo N, Zheng N, Dong W, Li X, Yu Y. Influences and mechanisms of nanoparticles on pentachloronitrobenzene accumulation by earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51471-51479. [PMID: 33983610 DOI: 10.1007/s11356-021-14368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Pesticides and nanoparticles may coexist in soil; however, influences of nanoparticles on accumulation of pesticides in terrestrial organisms are still unclear. This study aims to investigate the influences and mechanisms of metal oxide nanoparticles (nano ZnO and nano CuO) on accumulation of pentachloronitrobenzene (PCNB) in earthworms and their combined toxicity. The earthworms were cultivated in the soil spiked with nanoparticles (10, 50, 250 mg/kg) and PCNB (100 μg/kg) for 21 days. The concentrations of PCNB in earthworms in binary exposure treatments (PCNB + ZnO and PCNB + CuO) reached 2.47 and 3.13 times of that in individual PCNB exposure treatment, indicating that nanoparticles facilitated the accumulation of PCNB in earthworms. The contents of reactive oxygen species (ROS) in earthworms in treatments PCNB + ZnO 250 and PCNB + CuO 250 reached 379 and 316 fluorescence intensity/mg Protein, respectively, which were significantly higher than that in control group (183 fluorescence intensity/mg protein), indicating that nanoparticles would cause oxidative stress to earthworms. Earthworm coelomocytes were extracted from healthy earthworms and cultivated in culture media in cytotoxicity tests. Changes of intracellular ROS contents and cell viability suggested that PCNB and nanoparticles caused serious oxidative damage to earthworm coelomocytes, thus leading to the damage of cell membrane and cell death. In in vivo tests, changes of biomarkers (ROS and malondialdehyde) demonstrated that these pollutants injured the earthworms. Increased accumulation of PCNB in binary exposure treatments was due to the damage of body cavity caused by nanoparticles. This study provides a novel hypothesis for nanoparticles facilitating organic pollutants entering terrestrial organisms and determines whether nanoparticles would bring about greater environmental risks of other pollutants.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Na Zheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Weihua Dong
- College of Geographical Science, Changchun Normal University, Changchun, 130032, China
| | - Xiao Li
- Liaoning Renqia Daofeng Testing Technology Co Ltd, Shenyang, 110034, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|