1
|
Fu Z, Yao Z, Yang J, Cui J, Liao X, Bai X, Tian H. Halogen Emissions from Coal-Fired Power Plants in China: Evolutions, Driving Forces, and Future Trends. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1737-1744. [PMID: 39818821 DOI: 10.1021/acs.est.4c12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Atmospheric halogens, including fluorine (F), chlorine (Cl), bromine (Br), and iodine(I), significantly impact atmospheric chemistry and climate change. Containing all types of halogens, coal fired power plants (CFPPs) are among the major anthropogenic sources of atmospheric halogens. However, comprehensive estimates of halogen emissions from CFPPs in China remain limited, despite significant advancements in scale and pollution control. This study developed a detailed emissions inventory for all halogens from CFPPs using multisource data and the mass balance method, analyzing their spatiotemporal variations, driving forces, and future trends under climate goals. Results showed fluctuating halogen emissions from 2018 to 2022, with F, Cl, Br, and I reaching 6,875.7 t, 24,872.4 t, 1,127.9 t, and 476.7 t in 2022, respectively. Emissions were predominately concentrated in key coal resource areas and high-energy-consuming regions. Increased coal consumption was the primary driver of emissions growth, while improvements in pollution control and power generation technology contributed to reductions. Under air pollution control and climate goals, halogen emissions are expected to peak before 2030 and decline rapidly thereafter, with near-elimination by 2050. Combining strict air pollutants and carbon control technologies would offer the greatest reduction potential.
Collapse
Affiliation(s)
- Zhiqiang Fu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Zehui Yao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Junqi Yang
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Jiangyu Cui
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xinchen Liao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Chen Y, Zheng L, Chen X, Hu J, Li C, Zhang L, Cheng H. Distribution of mercury and methylmercury in aquacultured fish in special waters formed by coal mining subsidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116546. [PMID: 38843747 DOI: 10.1016/j.ecoenv.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.
Collapse
Affiliation(s)
- Yeyu Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China.
| | - Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| | - Jie Hu
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| | - Liqun Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Zhao Y, Zhang C, Ma L, Yu S, Yuan C, Li J, Tan P, Fang Q, Luo G, Chen G. Modeling of arsenic migration and emission characteristics in coal-fired power plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133213. [PMID: 38134683 DOI: 10.1016/j.jhazmat.2023.133213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
After coal combustion, the minerals present in fly ash can adsorb arsenic (As) during flue gas cooling and reduce As emissions. However, a quantitative description of this adsorption behavior is lacking. Herein, the As adsorption characteristics of minerals (Al/Ca/Fe/K/Mg/Na/Si) were investigated, and a model was developed to predict As content in fly ash. Lab-scale experiments and density functional theory calculations were performed to obtain mineral As adsorption potential. Then, the model was established using lab-scale experimental data for 11 individual coals. The model was validated using lab-scale data from ten blended coals and demonstrated acceptable performance, with prediction errors of 2.83-11.45 %. The model was applied to a 350 MW coal-fired power plant (CFPP) with five blended coals, and As concentration in the flue gas was predicted from a mass balance perspective. The experimental and predicted As contents in fly ash were 11.92-16.15 and 9.61-12.55 μg/g, respectively, with a prediction error of 17.39-22.29 %, and those in flue gas were 11.52-16.58 and 5.37-34.04 μg/Nm3. Finally, As distribution in the CFPP was explored: 0.74-1.51 % in bottom ash, 74.05-82.70 % in electrostatic precipitator ash, 0.53-1.19 % in wet flue gas desulfurization liquid, and 0.13-0.73 % in flue gas at the stack inlet.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Lun Ma
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Shenghui Yu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Changle Yuan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
4
|
Wang Z, Dai S, Cowan EA, Dietrich M, Schlesinger WH, Wu Q, Zhou M, Seramur KC, Das D, Vengosh A. Isotopic Signatures and Outputs of Lead from Coal Fly Ash Disposal in China, India, and the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12259-12269. [PMID: 37556313 DOI: 10.1021/acs.est.3c03456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources.
Collapse
Affiliation(s)
- Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Shifeng Dai
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Ellen A Cowan
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Matthew Dietrich
- The Polis Center, IU Luddy School of Informatics, Computing, and Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - William H Schlesinger
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University 100084 Beijing, China
| | - Mingxuan Zhou
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Keith C Seramur
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Debabrata Das
- Department of Geology, Panjab University, Chandigarh 160014, India
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Zeng W, Wan X, Gu G, Lei M, Yang J, Chen T. An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals - taking a coke plant as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159698. [PMID: 36309258 DOI: 10.1016/j.scitotenv.2022.159698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The existing spatial interpolation methods in the prediction of soil heavy metal distribution are generally based on spatial auto correlation theory, rarely considering the pollution patterns. By contrast, in polluted sites, heavy metals have a strong heterogeneity even within a very small area, which is not exactly in line with auto correlation theory. This contradiction may lead to inaccuracy in spatial prediction. Atmospheric diffusion and deposition are one of the main sources of soil heavy metal pollution caused by coal-related production activities. To improve the prediction accuracy, the diffusion patterns of pollutants were considered in this paper by integrating Geodetector, Co-Kriging (COK), and partition interpolation. Geodetector was used to identify the main driving factors of soil pollution, based on which, the main driving factors were used as covariates introduced into the interpolation method (COK). Specifically, the amount of particulate matter deposition obtained by a pollutant diffusion model (AERMOD) was used as a covariate. For comparison, the distances to quenching, coke oven, and ammonium sulfate section were also used as covariates. Compared with the Ordinary Kriging method, the method COK-AERMOD established here decreased the root mean square error values of As (2.05 reduced to 1.89), Cd (0.18 reduced to 0.16), Cr (19.07 reduced to 12.97), Cu (6.92 reduced to 4.72), Hg (0.32 reduced to 0.28), Ni (16.92 reduced to 16.10), Pb (18.29 reduced to 16.62), and Zn (159.68 reduced to 153.66). This method in this paper is informative for the interpolation of soil elements in contaminated areas with known pollution source and diffusion patterns.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang T, Tian G, Hu X, Liu B, Guo Y, Zhang L, Bian B. Analysis of mercury emissions and cycles in typical industrial city clusters: a case study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56760-56771. [PMID: 35347603 DOI: 10.1007/s11356-022-19878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
China's Suzhou (SZ), Wuxi (WX), and Changzhou (CZ) (collectively referred to as the SXC area) have developed economies and advanced industrial production, which are typical industrial city clusters. To analyze the Hg flow characteristics, we quantified the Hg emissions and circulation according to six categories (including industrial production, agricultural livestock, vehicle exhaust, solid waste, atmospheric deposition, and runoff). The results showed that the Hg emission from coal accounting for 40.99% of the total circulation. The amount of Hg circulating in SZ is obviously higher than those in WX and CZ, accounting for 47.88% of the total regional emissions. The Hg pollution in SXC area represent an optimistic level. Except that the Hg concentration in the soil in WX is slightly higher than the first-level soil quality standard, the water and atmosphere in the three cities and the soil in SZ and CZ all meet the highest national standards. The study provides in-depth statistics on the Hg cycle characteristics of typical industrial urban agglomerations. It is beneficial to the management of Hg and provides a basis for the implementation of different schemes in different stages of production and emission, so as to effectively prevent the occurrence of serious heavy metal poisoning hazards. This research idea is widely used and can be applied to other regions and other heavy metal elements.
Collapse
Affiliation(s)
- Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Xiuren Hu
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Bo Liu
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Yingying Guo
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
7
|
Wan X, Zeng W, Gu G, Wang L, Lei M. Discharge Patterns of Potentially Harmful Elements (PHEs) from Coking Plants and Its Relationship with Soil PHE Contents in the Beijing–Tianjin–Hebei Region, China. TOXICS 2022; 10:toxics10050240. [PMID: 35622653 PMCID: PMC9144211 DOI: 10.3390/toxics10050240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
The Beijing–Tianjin–Hebei (BTH) region in China is a rapid development area with a dense population and high-pollution, high-energy-consumption industries. Despite the general idea that the coking industry contributes greatly to the total emission of potentially harmful elements (PHEs) in BTH, quantitative analysis on the PHE pollution caused by coking is rare. This study collected the pollutant discharge data of coking enterprises and assessed the risks of coking plants in BTH using the soil accumulation model and ecological risk index. The average contribution rate of coking emissions to the total emissions of PHEs in BTH was ~7.73%. Cross table analysis indicated that there was a close relationship between PHEs discharged by coking plants and PHEs in soil. The accumulation of PHEs in soil and their associated risks were calculated, indicating that nearly 70% of the coking plants posed a significant ecological risk. Mercury, arsenic, and cadmium were the main PHEs leading to ecological risks. Scenario analysis indicated that the percentage of coking plants with high ecological risk might rise from 8.50% to 20.00% as time progresses. Therefore, the control of PHEs discharged from coking plants in BTH should be strengthened. Furthermore, regionalized strategies should be applied to different areas due to the spatial heterogeneity of risk levels.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-1064888087
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|