1
|
Sun J, Deng YP, Xu J, Zhu FM, He QY, Tang MM, Liu Y, Yang J, Liu HY, Fu L, Zhao H. Association of blood cadmium concentration with chronic obstructive pulmonary disease progression: a prospective cohort study. Respir Res 2024; 25:91. [PMID: 38368333 PMCID: PMC10874061 DOI: 10.1186/s12931-024-02726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Prior studies in patients with chronic obstructive pulmonary disease (COPD) had indicated a potential correlation between cadmium (Cd) exposure and reduction in lung function. Nevertheless, the influence of Cd exposure on the progression of COPD remained unknown. Exploring the relationship between Cd exposure and the progression of COPD was the aim of this investigation. METHODS Stable COPD patients were enrolled. Blood samples were collected and lung function was evaluated. Regular professional follow-ups were conducted through telephone communications, outpatient services, and patients' hospitalization records. RESULTS Each additional unit of blood Cd was associated with upward trend in acute exacerbation, hospitalization, longer hospital stay, and death within 2 years. Even after adjusting for potential confounding factors, each 1 unit rise in blood Cd still correlated with a rise in the frequencies of acute exacerbation, longer hospital stay, and death. Moreover, COPD patients with less smoking amount, lower lung function and without comorbidities were more vulnerable to Cd-induced disease deterioration. CONCLUSION Patients with COPD who have higher blood Cd concentration are susceptible to worse disease progression.
Collapse
Affiliation(s)
- Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
2
|
Cheng Y, Ma J, Li S, Tang Q, Shi W, Liang Y, Shi G, Qian F. Dietary cadmium health risk assessment for the Chinese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82421-82436. [PMID: 37326726 DOI: 10.1007/s11356-023-28199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) has high rates of soil-to-plant transference, coupled with its non-biodegradability and persistence; long-term management of Cd in agriculture is thus required to ensure better soil and food security and safety. Identifications of regions with high soil Cd concentration or high dietary Cd intakes are critical public health priorities. Human health risk assessment for dietary Cd intake was thus undertaken by employing three approaches: FCA (food chain approach), TDA (total diet approach), and FQA (food quality approach). The correlation between green/total vegetable consumption rates and dietary Cd intake from vegetables was statistically significant. For consumption, the hazard quotients (HQs) calculated by FCA and TDA were all less than 1 except for Hunan and Sichuan province. For rice consumption, the HQs derived by FCA or TDA approach for eight provinces exceeded 1. Residents in Hubei, Guangxi, Jilin, Zhejiang, Liaoning, Shanghai, Sichuan, and Guangxi were more vulnerable due to their notable higher consumption rates.Weighted rankings of the health risk levels were determined to derive the comparative risk management priority. For Cd intake from vegetables, four provinces/cities have high relative priority; for Cd intake from grains, three provinces have high relative priority. The comparative risk management priority for Hunan and Sichuan was high for dietary intake from vegetables or rice. Weighted average HQs were derived to determine the integrated dietary Cd intake health risk levels for dietary intake from vegetables or grains. The risk levels for Hunan, Guangxi, Sichuan, and Zhejiang are high, so effective measures should be taken to reduce Cd dietary intakes to ensure health protection.It is envisaged that the methodology employed in this study could provide useful insights into how various approaches can be integrated to determine human health risk levels for Cd intake, so more effective and targeted measures can be taken accordingly for the relevant regions.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Jun Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Siqi Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qiuyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weilin Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Sun Y, Zhang W, Li Y, Zhu J, Liu C, Luo L, Liu J, Zhang C. Multigenerational genetic effects of paternal cadmium exposure on ovarian granulosa cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115123. [PMID: 37315360 DOI: 10.1016/j.ecoenv.2023.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/20/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
To explore whether paternal cadmium (Cd) exposure causes ovarian granulosa cell (GC) apoptosis in offspring and the multigenerational genetic effects. From postnatal day 28 (PND28) until adulthood (PND56), SPF male Sprague-Dawley (SD) rats were gavaged daily with varying concentrations of CdCl2. (0, 0.5, 2, and 8 mg/kg). After treatment, the F1 generation was produced by mating with untreated female rats, and the F1 generation male rats were mated with untreated female rats to produce the F2 generation. Apoptotic bodies (electron microscopy) and significantly higher apoptotic rates (flow cytometry) were observed in both F1 and F2 ovarian GCs following paternal Cd exposure. Moreover, the mRNA (qRTPCR) or protein (Western blotting) levels of bax, bcl2, bcl-xl, caspase 3, caspase 8, and caspase 9 were changed to varying degrees. Apoptosis-related miRNAs (qRTPCR) and methylation modifications of apoptosis-related genes (bisulfite-sequencing PCR) in ovarian GCs were further detected. Compared with those of controls, the expression patterns of miRNAs in F1 and F2 offspring were different after paternal Cd exposure, while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, there are paternal genetic intergenerational and transgenerational effects on ovarian GC apoptosis induced by paternal Cd exposure. These genetic effects were related to the upregulation of BAX, BCL-XL, Cle-CASPASE 3, and Cle-CASPASE 9 in F1 and the upregulation of Cle-CASPASE 3 in F2 progeny. Important changes in apoptosis-related miRNAs were also observed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
4
|
Han L, Wu W, Chen X, Gu M, Li J, Chen M, Zhou Y. The derivation of soil generic assessment criteria for polychlorinated biphenyls under the agricultural land scenario in Pearl and Yangtze River Delta regions, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162015. [PMID: 36746284 DOI: 10.1016/j.scitotenv.2023.162015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The agricultural soils in China are suffered from serious polychlorinated biphenyls (PCBs) contamination, however, the valid management standards for farmland are absent to efficiently control the health risks of PCBs exposure. This study analyzed the contamination characteristics and main composition of PCBs in agricultural soils of the southeastern China from the published literature over the past 20 years, and derived the regional generic assessment criteria (GAC) using an exposure modelling approach for individual and total PCBs (∑PCBs) via multiple exposure pathways such as ingestion of soil and dust, consumption of vegetables, dermal contact with soil and dust, ingestion of soil attached to vegetables, and inhalation of soil vapour and soil-derived dust outdoors under the agricultural land scenario. It is identified that the averaged ∑PCBs concentration of 80.03 ng g-1 under the 95 % lower confidence limit with an unacceptable health risk of 4.8 × 10-6 has significantly exceeded the integrated generic assessment criteria (expressed as GACint) of 16.5 ng g-1. Accordingly, the exposure pathways from the consumption of agricultural produces and indirect ingestion of soil attached to vegetables contributed up to 62 %-88 % of the total exposure, followed by 11 %-33 % of the soil ingestion and 2 %-6 % of dermal contact. The derived GACint for ∑PCBs is extremely valuable to effectively assess and manage the PCBs contamination in agricultural soils of China.
Collapse
Affiliation(s)
- Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenpei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xueyan Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, 8 Yuanhua Road, Innovation Building 106, Nanjing University Science Park, Nanjing 210034, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Youya Zhou
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
5
|
Lv BB, Yang CL, Tan ZX, Zheng L, Li MD, Jiang YL, Liu L, Tang MM, Hua DX, Yang J, Xu DX, Zhao H, Fu L. Association between cadmium exposure and pulmonary function reduction: Potential mediating role of telomere attrition in chronic obstructive pulmonary disease patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114548. [PMID: 36652742 DOI: 10.1016/j.ecoenv.2023.114548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.
Collapse
Affiliation(s)
- Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chun-Lan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ling Zheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yingshang, Fuyang, Anhui 236000, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Dong-Xu Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|