1
|
Li C, Li X, Niu M, Xiao D, Luo Y, Wang Y, Fang ZE, Zhan X, Zhao X, Fang M, Wang J, Xiao X, Bai Z. Unveiling correlations between aristolochic acids and liver cancer: spatiotemporal heterogeneity phenomenon. Chin Med 2024; 19:132. [PMID: 39342223 PMCID: PMC11439320 DOI: 10.1186/s13020-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Aristolochic acids are a class of naturally occurring compounds in Aristolochiaceae that have similar structural skeletons and chemical properties. Exposure to aristolochic acids is a risk factor for severe kidney disease and urinary system cancer. However, the carcinogenicity of aristolochic acids to the liver, which is the main site of aristolochic acid metabolism, is unclear. Although the characteristic fingerprint of aristolochic acid-induced mutations has been detected in the liver and aristolochic acids are known to be hepatotoxic, whether aristolochic acids can directly cause liver cancer is yet to be verified. This review summarizes the findings of long-term carcinogenicity studies of aristolochic acids in experimental animals. We propose that spatiotemporal heterogeneity in the carcinogenicity of these phytochemicals could explain why direct evidence of aristolochic acids causing liver cancer has never been found in adult individuals. We also summarized the reported approaches to mitigate aristolochic acid-induced hepatotoxicity to better address the associated global safety issue and provide directions and recommendations for future investigation.
Collapse
Affiliation(s)
- Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Dake Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ye Luo
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yinkang Wang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-E Fang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyan Zhan
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mingxia Fang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| |
Collapse
|
2
|
Shen K, Kang D, Choi Y, Jeon J. Target and Suspect Screening for Organic Additives in Six Classifications of Personal Care Products Using Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:839-854. [PMID: 38587268 DOI: 10.1021/jasms.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Personal care products (PCPs) are integral components of daily human existence, including a large number of chemicals intentionally added for functional attributes (e.g., preservatives and fragrances) or unintentionally present, such as plasticizers. This investigation aimed to optimize the methodology for target and suspect screening via liquid chromatography-high-resolution mass spectrometry, focusing on nine prevalent organic additives (comprising bisphenols A, F, and S, methyl, ethyl, propyl, and butylparaben, 5-chloro-2-methyl-4-isothiazolin-3-one, and 4-hydroxybenzoic acid). A total of 50 high-selling PCPs were purchased from the local online market as samples. In detail, PCP samples were classified into body washes, shampoos, hair conditioners, facial cleansers, body lotions, and moisture creams. For calibration, the quality assurance and quality control results demonstrated a coefficient of determination (R2) surpassing 0.999, with detection and quantification limits ranging from 2.5 to 100.0 ng/g. For recovery experiments, replicate recoveries (n = 5) ranged from 61 to 134%. In purchased PCP samples, five of the nine target compounds were detected via a target screening. Methylparaben exhibited the highest concentration (7860 mg/kg) in a facial cleanser, which is known as an endocrine-disrupting chemical. A total of 248 suspects of organic additives were screened in PCPs, leading to a tentative identification of 9. Confirmation (confidence level 1) via reference standards was achieved for three suspects, while six were tentatively identified with a confidence level of 2. This two-step extraction methodology utilizing methyl tert-butyl ether and isopropyl alcohol enabled simultaneous analysis of diverse chemical groups with distinct properties.
Collapse
Affiliation(s)
- Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
3
|
Wang C, Liu Y, Han J, Li W, Sun J, Wang Y. Detection and Removal of Aristolochic Acid in Natural Plants, Pharmaceuticals, and Environmental and Biological Samples: A Review. Molecules 2023; 29:81. [PMID: 38202664 PMCID: PMC10779802 DOI: 10.3390/molecules29010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Aristolochic acids (AAs) are a toxic substance present in certain natural plants. Direct human exposure to these plants containing AAs leads to a severe and irreversible condition known as aristolochic acid nephropathy (AAN). Additionally, AAs accumulation in the food chain through environmental mediators can trigger Balkan endemic nephropathy (BEN), an environmental variant of AAN. This paper presents a concise overview of the oncogenic pathways associated with AAs and explores the various routes of environmental exposure to AAs. The detection and removal of AAs in natural plants, drugs, and environmental and biological samples were classified and summarized, and the advantages and disadvantages of the various methods were analyzed. It is hoped that this review can provide effective insights into the detection and removal of AAs in the future.
Collapse
Affiliation(s)
- Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Jintai Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China;
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Cao Y, Shi H, Lan Z, He K, Chen Q, Zhang C, Feng S, Shan L. Efficient separation of aristolochic acid I from Caulis aristolochiae manshuriensis (Guan-mu-tong) with copper mediated magnetic molecularly imprinted polymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4555-4562. [PMID: 37644819 DOI: 10.1039/d3ay00920c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Screening bioactive compounds from natural products is one of the most effective ways for new drug research and development. However, obtaining a single extract component on a large scale and with high purity from a complex matrix is still an arduous and challenging task. Herein, one metal mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and prepared for specifically capturing Aristolochic acid I (AAI). The preparation was done with copper(II) as binding pivot, (3-aminopropyl) triethoxysilane as functional monomer, and Fe3O4 as core, by a one-step sol-gel method. Under the optimized conditions, the apparent maximum binding amount of copper mediated mMIP (Cu-mMIP) reaches as high as 349.72 mg g-1, the highest among the reported AAI-MIPs. Moreover, the nanoparticles exhibit excellent specificity and selectivity, good reproducibility and stability, high superparamagnetism (60.32 emu g-1), and high imprinting efficiency (an imprinting factor of 7). By simulating an industrial-scale separation, 16.56 mg AAI (purity of 95.11%) is obtained after six cycles with 100 mg nanoparticles from 20 g Caulis aristolochiae manshuriensis (Guan-mu-tong). Notably, this takes only 3 hours and consumes 50 mL of methanol. The study provides a potent tool for the green, fast, and specific extraction of high-purity ingredients from natural plants in the manufacturing industry and conventional analysis in the lab.
Collapse
Affiliation(s)
- Yu Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Haizhu Shi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Zhuo Lan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Kunlin He
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Qian Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| | - Lianhai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, China.
| |
Collapse
|
5
|
Chin ML, Au CK, Chan CK, Jin L, Živković Stošić MZ, Đorđević Zlatković MR, Zlatković D, Pavlović NM, Chan W. Fabrication of a Simple and Efficient HPLC Reduction Column for Online Conversion of Aristolochic Acids to Aristolactams Prior to Sensitive Fluorescence Detection. Anal Chem 2023; 95:12365-12372. [PMID: 37565718 DOI: 10.1021/acs.analchem.3c01874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aristolochic acids (AAs) are nephrotoxic and carcinogenic nitrophenanthrene carboxylic acids produced naturally by plants from the Aristolochia and Asarum genera, which have been used extensively as herbal medicines. In addition to consuming AA-containing herbal medicinal products, there is emerging evidence that humans are also exposed to AA through the environment. In 2022, the World Health Organization (WHO) called for global action to remove AA exposure sources and to implement preventative measures against the development of AA-associated cancers. Herein, we report the development of a simple and efficient iron powder-packed reduction column that allows online post-column conversion of the nonfluorescing AA to its corresponding strongly fluorescing aristolactam (AL), facilitating the sensitive and selective detection of AA in herbal medicinal products, food grain, arable soil, or groundwater samples by high-performance liquid chromatography with fluorescence detection. Moreover, AL, a group of naturally occurring derivatives of AA that have demonstrated toxicity to cultured bacteria, human cells, and rats, is monitored and quantified simultaneously with AA in one single run without sacrificing sensitivity. In comparison with existing analytical methods for AA measurement, the newly developed method is not only inexpensive and less laborious, but it also offers improved sensitivity. We believe this novel method will find wide application in identifying the presence of AA in food, herbal medicines, and environmental samples, thus assisting in the identification and removal of AA exposure sources.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Long Jin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Miljana R Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
6
|
Sun MX, Qiao FX, Xu ZR, Liu YC, Xu CL, Wang HL, Qi ZQ, Liu Y. Aristolochic acid I exposure triggers ovarian dysfunction by activating NLRP3 inflammasome and affecting mitochondrial homeostasis. Free Radic Biol Med 2023; 204:313-324. [PMID: 37201634 DOI: 10.1016/j.freeradbiomed.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.
Collapse
Affiliation(s)
- Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
7
|
Zhang J, Wang Y, Wang C, Li K, Tang W, Sun J, Wang X. Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238271. [PMID: 36500364 PMCID: PMC9739334 DOI: 10.3390/molecules27238271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
When Aristolochia plants wilt and decay, aristolochic acids (AAs) are released into the soil, causing soil contamination. It has been demonstrated that aristolochic acid can be accumulated and enriched in crops through plant uptake. However, there is a lack of systematic studies on the migration and accumulation of AAs in a realistic simulated soil environment. In this study, Aristolochia herbal extracts were mixed with soil for growing three typical vegetables: lettuce, celery, and tomato. The contents of AAs in the above-mentioned plants were determined by an established highly sensitive LC-MS/MS method to study the migration and accumulation of AAs. We found that AAs in the soil can be transferred and accumulated in plants. AAs first entered the roots, which were more likely to accumulate AAs, and partially entered the above-ground parts. This further confirms that AAs can enter the food chain through plants and can have serious effects on human health. It was also shown that plants with vigorous growth and a large size absorbed AAs from the soil at a faster rate. The more AAs present in the soil, the more they accumulated in the plant.
Collapse
Affiliation(s)
- Jinghe Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| | - Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kan Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifang Tang
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xikui Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| |
Collapse
|
8
|
Li W, Zhang J, Yu X, Meng F, Huang J, Zhang L, Wang S. Aristolochic acid I exposure decreases oocyte quality. Front Cell Dev Biol 2022; 10:838992. [PMID: 36036003 PMCID: PMC9402977 DOI: 10.3389/fcell.2022.838992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oocyte quality is a determinant of a successful pregnancy. The final step of oocyte development is oocyte maturation, which is susceptible to environmental exposures. Aristolochic acids (AAs), widely existing in Aristolochia and Asarum plants that have been used in traditional medicine, can result in a smaller ovary and fewer superovulated oocytes after in vivo exposure to mice. However, whether AAs affect oocyte maturation and the underlying mechanism(s) are unclear. In this study, we focused on the effect of Aristolochic acid I (AAI), a major compound of AAs, on the maturation of in vitro cultured mouse oocytes. We showed that AAI exposure significantly decreased oocyte quality, including elevated aneuploidy, accompanied by aberrant chiasma patterns and spindle organization, and decreased first polar body extrusion and fertilization capability. Moreover, embryo development potential was also dramatically decreased. Further analyses revealed that AAI exposure significantly decreased mitochondrial membrane potential and ATP synthesis and increased the level of reactive oxygen species (ROS), implying impaired mitochondrial function. Insufficient ATP supply can cause aberrant spindle assembly and excessive ROS can cause premature loss of sister chromatid cohesion and thus alterations in chiasma patterns. Both aberrant spindles and changed chiasma patterns can contribute to chromosome misalignment and thus aneuploidy. Therefore, AAI exposure decreases oocyte quality probably via impairing mitochondrial function.
Collapse
Affiliation(s)
- Weidong Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Meng
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- *Correspondence: Shunxin Wang,
| |
Collapse
|
9
|
Thongkhao K, Tungphatthong C, Sukrong S. A PCR-lateral flow immunochromatographic assay (PCR-LFA) for detecting Aristolochia species, the plants responsible for aristolochic acid nephropathy. Sci Rep 2022; 12:12188. [PMID: 35842504 PMCID: PMC9288547 DOI: 10.1038/s41598-022-16528-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Aristolochic acids (AAs), which are strong carcinogens, have caused dietary supplements with Aristolochia plants to be discontinued worldwide. Therefore, the development of a method to identify these herbs is critical for customer safety. To support the regulation of Aristolochia-free products, a PCR coupled with lateral flow immunochromatographic assay (PCR-LFA) that is specific to the nucleotide signature in plastid rbcL gene region of Aristolochia species was developed to detect Aristolochia plants and related herbal products. Triplex primers (A397F, C357F and R502) were designed based on specific nucleotides observed exclusively in the rbcL sequences of Aristolochia. Positive results for Aristolochia occur when the three pink lines are clearly developed on the developed lateral flow strip and can be seen by the naked eye. In this study, the lateral flow strip has sensitivity for detecting amplicons amplified from genomic DNA at the concentrations as low as 0.01 ng. Various kinds of samples, including purchased crude drugs and polyherbal samples, have been investigated, and the results showed that Aristolochia crude drugs and Aristolochia-containing products are still present in dispensaries. In conclusion, with the goal of protecting consumers from the health risks associated with Aristolochia contamination, PCR-LFA was developed and demonstrated to be efficient for detecting plants belonging to Aristolochia in various kinds of samples.
Collapse
Affiliation(s)
- Kannika Thongkhao
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chayapol Tungphatthong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Lukinich-Gruia AT, Nortier J, Pavlović NM, Milovanović D, Popović M, Drăghia LP, Păunescu V, Tatu CA. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. CHEMOSPHERE 2022; 297:134111. [PMID: 35231474 DOI: 10.1016/j.chemosphere.2022.134111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Described in the 1950s, Balkan Endemic Nephropathy (BEN) has been recognized as a chronic kidney disease (CKD) with clinical peculiarities and multiple etiological factors. Environmental contaminants - aromatic compounds, mycotoxins and phytotoxins like aristolochic acids (AAs) - polluting food and drinking water sources, were incriminated in BEN, due to their nephrotoxic and carcinogenic properties. The implication of AAs in BEN etiology is currently a highly debated topic due to the fact that they are found within the Aristolochiaceae plants family, used around the globe as traditional medicine and they were also incriminated in Aristolochic Acid Nephropathy (AAN). Exposure pathways have been investigated, but it is unclear to what extent AAs are acting alone or in synergy with other cofactors (environmental, genetics) in triggering kidney damage. Experimental studies strengthen the hypothesis that AAI, the most studied compound in the AAs class, is a significant environmental contaminant and a most important causative factor of BEN. The aim of this review is to compile information about the natural exposure pathways to AAI, via traditional medicinal plants, soil, crop plants, water, food, air. Data that either supports or contradicts the AAI theory concerning BEN etiology was consolidated and available solutions to reduce human exposure were discussed. Because AAI is a phytotoxin with physicochemical properties that allow its transportation in environmental matrices from different types of areas (endemic, nonendemic), and induce CKDs (BEN, AAN) and urinary cancers through bioaccumulation, this review aims to shed a new light on this compound as a biogenic emerging pollutant.
Collapse
Affiliation(s)
- Alexandra T Lukinich-Gruia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Joëlle Nortier
- Nephrology Department, Brugmann Hospital & Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Belgium.
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, 11070, Belgrade, Serbia; University of Niš, Univerzitetski Trg 2, 18106, Niš, Serbia.
| | | | - Miloš Popović
- Department for Biology and Ecology, Faculty of Natural Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Lavinia Paula Drăghia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Virgil Păunescu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| | - Călin A Tatu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| |
Collapse
|
11
|
Thangavelu M, Ismail A, Zakaria A, Elmansy H, Shahrour W, Prowse O, Kotb A. Aristolochic acid: What urologists should know. Arch Ital Urol Androl 2022; 94:123-125. [PMID: 35352538 DOI: 10.4081/aiua.2022.1.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
To the Editor, Aristolochic acid is one of major causes for upper tract urothelial carcinoma, especially in younger population. While it is mentioned as a cause in guidelines, little is actually known about the toxin by urologists. We are aiming in our letter to provide some direct and clear information to ourselves that would help us to know more about that toxin and how it can adversely affect our patients [...].
Collapse
Affiliation(s)
| | - Asmaa Ismail
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Zakaria
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Hazem Elmansy
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Walid Shahrour
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Owen Prowse
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Kotb
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| |
Collapse
|
12
|
Xu D, Yin L, Lin J, Fu H, Peng X, Chang L, Zheng Y, Zhao X, Shu G. Aristolochic Acid I-Induced Hepatotoxicity in Tianfu Broilers Is Associated with Oxidative-Stress-Mediated Apoptosis and Mitochondrial Damage. Animals (Basel) 2021; 11:ani11123437. [PMID: 34944214 PMCID: PMC8698099 DOI: 10.3390/ani11123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Aristolochic acid (AA) is a component of traditional Chinese herbs and commonly used in the farm poultry industry in China for anti-infection, anti-viral and anti-bacterial treatment. However, long-term and over-exposure of these drugs has been proven to be associated with serious hepatotoxicity, but the mechanism of AA-I-induced hepatotoxicity remains unknown. Therefore, in this study, a subchronic toxicity test was conducted to evaluate the mechanism of AA-I-induced hepatotoxicity in Tianfu broilers. Subchronic exposure to high doses of AA-I in broilers can cause serious hepatotoxicity by breaking the redox balance to form oxidative stress, along with promoting oxidative-stress-mediated apoptosis and mitochondrial damage. In conclusion, AA-I has been found to damage broilers’ livers in high doses. This study provides suggestions for the clinical application of traditional Chinese medicine containing AA-I in the poultry industry. Abstract Aristolochic acid (AA) is a component of traditional Chinese herbs and commonly used for farm animals in China. Over-exposure of AA has been proven to be associated with hepatotoxicity; however, the mechanism of action of AA-I-induced hepatotoxicity remains unknown. In the current study, a subchronic toxicity test was conducted to evaluate the mechanism of AA-induced hepatotoxicity in Tianfu broilers. According to the results, AA-I-induced hepatotoxicity in Tianfu broilers was evidenced by the elevation of liver weight, levels of serum glutamic oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). Furthermore, hepatocyte swelling, vesicular degeneration and steatosis were observed. Additionally, AA-I elevated the production of reactive oxygen species (ROS) and induced oxidative stress, which further led to excessive apoptosis, characterized by mitochondrial depolarization, upregulation of Bax, and down-regulation of Bcl-2 expression. In conclusion, the mechanism of AA-I-induced hepatotoxicity was associated with oxidative-stress-mediated apoptosis and mitochondrial damage.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (D.X.); (X.Z.)
| | - Lizi Yin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 611130, China;
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55791, USA;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (D.X.); (X.Z.)
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (J.L.); (H.F.)
- Correspondence:
| |
Collapse
|