1
|
Aendo P, Mingkhwan R, Senachai K, Pinniam N, Sonthong K, Tulayakul P. Heavy metal contamination in eggs on poultry farms and ecological risk assessment around a gold mine area in northern Thailand. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:457. [PMID: 39340673 PMCID: PMC11438829 DOI: 10.1007/s10653-024-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
The aim of this study was to analyze and compare the Hg, Pb, Cd, and Mn levels in egg feed, soil, and water among laying hens, laying ducks, and free-grazing duck farms in contaminated and uncontaminated areas. This study revealed that the Hg concentration in the eggs of free-grazing ducks was significantly greater than that in the eggs of laying hens and ducks in both contaminated and uncontaminated areas. However, the Pb and Mn levels in the eggs of laying ducks and free-grazing ducks were significantly greater than those in the eggs of laying hens in the contaminated area. Unfortunately, the Hg, Pb, Cd, and Mn concentrations in the feed, soil, and water from these three farms in both areas were not significantly different (P > 0.05). Hg and Cd were confirmed to be enriched in the egg albumin fraction, while Pb and Mn were found mainly in the egg yolk. However, egg consumption from free-grazing duck farms was the riskiest to Hg, Pb, and Mn contamination in the contaminated area. Additionally, the ecological risk factor (ER) in the soil revealed that all the farms were at considerable to high environmental risk for Cd except for Hg and Pb. Although the potential ecological risk index (RI) indicated a moderate risk for all farms in both contaminated and uncontaminated areas, these results were not consistent with our hypothesis. Therefore, the information gained in this study could be useful for setting up mitigation strategies and making decisions about public health concerns related to health hazards, especially for ecological risk assessments of heavy metal contamination.
Collapse
Affiliation(s)
- Paweena Aendo
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Rachaneekorn Mingkhwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Nayika Pinniam
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Kamonrat Sonthong
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Kasetsart University Research and Development Institute, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Li Y, Xie H. Spatial-temporal variation and correlation analysis of ecosystem service values and ecological risks in winter city Shenyang, China. Sci Rep 2024; 14:18182. [PMID: 39107429 PMCID: PMC11303696 DOI: 10.1038/s41598-024-67651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Ecosystems in winter cities are complex and fragile, experiencing significant changes due to climate variations and human construction activities. Previous studies on the assessment of overall ecosystem service value (ESV) and ecological risk index (ERI) in winter cities are scarce. In this study, we constructed ESV and ERI measurement models using land use data in 2000, 2010, and 2020 using the improved value per unit area factor method and the landscape pattern index method, respectively, to reveal their spatial and temporal change characteristics. Geographic detectors were used to explore the driving roles of natural and artificial factors on the changes of ESV and ERI. The combination in ESV and ERI can then provide a more quantitative and accurate basis for policy decisions, identify priority areas for urban ecological restoration, and reduce the risk to ecosystems. The results of the study show that the total ESV of Shenyang city decreased from 273.97 × 108 CNY to 270.38 × 108 CNY during 2000-2020. Although the decrease is not large, the ESV changes structurally with the advancement of urbanization. During the 20 years, the construction land with the lowest ecological service function continues to expand, increasing by 354 km2, the grassland decreased by 215.9 km2, and the arable land decreased by 196.6 km2. The ecological service function of the water area is the strongest, with an increase of 51.3 km2 in the water area, ensuring that there is no significant decline in ESV. The size of the ERI is Very high, High, and Medium value zones remained relatively stable, while the size of the Very Low-value zone decreased by 12.78% and the size of the Low-value zone increased by 13.21%. The interaction factors that contributed most to the changes in ESV and ERI were annual evapotranspiration (EVP)/ Normalized Difference Vegetation Index (NDVI) and Annual sunshine hours (SSD)/ Digital Elevation Model (DEM) , respectively. There was a spatial correlation between ESV and ERI. The areas with the highest ESV supply capacity and at the same time facing severe ecological risks to the landscape pattern are distributed in the northeastern hilly lands. This area should be prioritized to develop planning and control measures to prevent further erosion of forest lands and grasslands and reduce ecological risks. These results provide a theoretical basis for ensuring ecological security and sustainable development in winter cities.
Collapse
Affiliation(s)
- Yang Li
- Jangho Architecture College, Northeastern University, Shenyang, 110169, China.
| | - Hao Xie
- Jangho Architecture College, Northeastern University, Shenyang, 110169, China
| |
Collapse
|
3
|
Li X, Ding D, Xie W, Zhang Y, Kong L, Li M, Li M, Deng S. Risk assessment and source analysis of heavy metals in soil around an asbestos mine in an arid plateau region, China. Sci Rep 2024; 14:7552. [PMID: 38555404 PMCID: PMC10981712 DOI: 10.1038/s41598-024-58117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Asbestos is widely used in construction, manufacturing, and other common industrial fields. Human activities such as mining, processing, and transportation can release heavy metals from asbestos into the surrounding soil environment, posing a health hazard to the mining area's environment and its surrounding residents. The purpose of the present study was to determine the extent of ecological and human health damage caused by asbestos pollution, as well as the primary contributors to the contamination, by examining a large asbestos mine and the surrounding soil in China. The level of heavy metal pollution in soil and sources were analyzed using methods such as the geo-accumulation index (Igeo), potential ecological risk index (RI), and positive matrix factorization (PMF) model. A Monte Carlo simulation-based health risk model was employed to assess the health risks of heavy metals in the study area's soil to human beings. The results showed that the concentrations of As, Pb, Cr, Cu, and Ni in the soil were 1.74, 0.13, 13.31, 0.33, and 33.37 times higher than the local soil background values, respectively. The Igeo assessment indicated significant accumulation effects for Ni, Cr, and As. The RI evaluation revealed extremely high comprehensive ecological risks (RI ≥ 444) in the vicinity of the waste residue heap and beneficiation area, with Ni exhibiting strong individual potential ecological risk (Eir ≥ 320). The soil health risk assessment demonstrated that As and Cr posed carcinogenic risks to adults, with mean carcinogenic indices (CR) of 1.56E - 05 and 4.14E - 06, respectively. As, Cr, and Cd posed carcinogenic risks to children, with mean CRs of 1.08E - 04, 1.61E - 05, and 2.68E - 06, respectively. Cr also posed certain non-carcinogenic risks to both adults and children. The PMF model identified asbestos contamination as the primary source of heavy metals in the soil surrounding the asbestos mining area, contributing to 79.0%. According to this study, it is recommended that management exercise oversight and regulation over the concentrations of Ni, Cr, Cd, and As in the soil adjacent to asbestos mines, establish a designated control zone to restrict population activities, and locate residential zones at a safe distance from the asbestos mine production zone.
Collapse
Affiliation(s)
- Xuwei Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Da Ding
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Wenyi Xie
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Ya Zhang
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Lingya Kong
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Ming Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Mei Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China
| | - Shaopo Deng
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, China.
| |
Collapse
|
4
|
Chi H, Liu X, Yang X, Zhang R, Xia T, Sun Y, Hu K, Hao F, Liu Y, Yang S, Deng Q, Wen X. Risk assessment and source identification of soil heavy metals: a case study of farmland soil along a river in the southeast of a mining area in Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:39. [PMID: 38227107 DOI: 10.1007/s10653-023-01803-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024]
Abstract
To investigate the heavy metals (HMs) contamination of surface farmland soil along the river in the southeast of a mining area in southwest China and identify the contamination sources, 54 topsoil samples were collected and the concentrations of seven elements (Zn, Ni, Pb, Cu, Hg, Cr, and Co) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic fluorescence spectrometry (AFS). The geo-accumulation index ([Formula: see text]) and comprehensive potential ecological risk index ([Formula: see text]) were used for analysis to determine the pollution degree of HMs and the risk level of the study area. Meanwhile, the Positive Matrix Factorization (PMF) model was combined with a variety of statistical methods to determine the sources of HMs. To explore the influence of the river flowing through the mining area on the concentrations of HMs in the farmland soil, 15 water samples were collected and the concentrations of the above seven elements were determined. The results showed that the concentrations of Pb, Cu, and Zn in soil all exceeded the risk screening value, and Pb in soil of some sampling sites exceeded control value of "Agricultural Land Soil Pollution Risk Control Standard".[Formula: see text] showed that Pb was heavily contaminated, while Cu and Zn were moderately contaminated. RI showed that the study area was at moderate risk. PMF and various statistical methods showed that the main source of HMs was the industrial source. In the short term, the river flowing through the mine has no significant influence on the concentration of HMs in the soil. The results provide a reference for the local government to control contamination and identify the sources of HMs.
Collapse
Affiliation(s)
- Huajian Chi
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xin Liu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Rui Zhang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Ting Xia
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Yiping Sun
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
5
|
Aradhi KK, Dasari BM, Banothu D, Manavalan S. Spatial distribution, sources and health risk assessment of heavy metals in topsoil around oil and natural gas drilling sites, Andhra Pradesh, India. Sci Rep 2023; 13:10614. [PMID: 37391457 PMCID: PMC10313719 DOI: 10.1038/s41598-023-36580-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Soils are usually the interface between human activity and environmental components that must be conserved and protected. As a result of rising industrialization and urbanization, activities such as exploration and extraction operations lead to the release of heavy metals into the environment. This study presents distribution of six heavy metals (As, Cr, Cu, Ni, Pb and Zn) in 139 top soil samples collected in and around oil and natural gas drilling sites at a sampling density of 1 site/12 km2. The results indicated the concentration ranged from 0.1 to 16 mg/kg for As, 3-707 mg/kg for Cr, 7-2324 mg/kg for Cu, 14-234 mg/kg for Ni, 9-1664 mg/kg for Pb, and 60-962 mg/kg for Zn. The contamination of soil was estimated on the basis of Index of geo accumulation (Igeo), enrichment factor (Ef), and contamination factor (Cf). Further, spatial distribution pattern maps indicated that the pollution levels for Cu, Cr, Zn, and Ni were higher around drilling sites of the study area relative to other regions. Using exposure factors for the local population and references from the USEPA's integrated database, potential ecological risk indices (PERI) and health risk assessments were made. The hazard index (HI) values of Pb (in adults) and Cr, Pb (in children) exceeded the recommended limit of HI = 1, indicating the non-carcinogenic risks. Total carcinogenic risk (TCR) calculations revealed Cr (in adults) and As, Cr (in children) levels in soils exceeded the threshold value of 1.0E - 04, indicating significant carcinogenic risk due to high metal concentrations in the study area. These results may assist in determining the soil's present state and its effect due to extraction strategies used during drilling process and initiate few remedial techniques, particularly for proper management strategies in farming activities to decrease point and non-point source of contamination.
Collapse
Affiliation(s)
- Keshav Krishna Aradhi
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Babu Mallesh Dasari
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dasaram Banothu
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
| | - Satyanarayanan Manavalan
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Muhammad J, Xu P, Khan S, Su JQ, Sarwar T, Nazneen S, Khan A. Arsenic contribution of poultry manure towards soils and food plants contamination and associated cancer risk in Khyber Pakhtunkhwa, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3321-3342. [PMID: 34542787 DOI: 10.1007/s10653-021-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to high level of arsenic (As) through the ingestion of contaminated soil, dust and food plants can pose health risk to humans. This study investigates the total arsenic (As), arsenobetaine (AsB), monomethylarsenate (MMA), dimethylarsenate (DMA), arsenite (As3+) and arsenate (As5+) concentrations in poultry feed, manure, agricultural soils and food plants collected from Khyber Pakhtunkhwa Province, Pakistan. The total mean As concentrations in the edible parts of food plants ranged from 0.096 mg kg-1 to 1.25 mg kg-1 with percentile (P) values (P25-0.039, P50-0.0765, P75-0.165 1 mg kg-1 to P25-0.95, P50-1.23, P75-1.6 1 mg kg-1) and exceeded the food safety limit (0.1 mg kg-1) of Food & Agriculture Organization (FAO) and World Health Organization (WHO) in all plant species except Pisum sativum (pea) and Mentha arvensis (mint). The risk to human health was assessed through the average daily intake (ADI), hazards quotient (HQ), health risk index (HRI) and lifetime cancer risk (LTCR). The highest average daily intake of As via the ingestion of Malva neglecta (mallow, a leafy plant) was observed for adults and children. The ADI for adults and children (2.36 × 10-4 mg kg-1 day-1 and 6.33 × 10-4 mg kg-1 day-1) was about 13% and 5%, respectively, of the Bench Mark Dose Limit (BMDL0.5) of 3.00 × 10-3 mg kg-1 day-1 set by WHO. The HRI was 3 times more in the children (2.1) than the adults (0.79), posing non-cancer health risks (health risk index > 1) for children. The LTCR values were slightly higher (1.53 × 10-4) relative to USEPA and WHO limits (1 × 10-6 to 1 × 10-4) for children whereas a minimal cancer risk was observed for adults via consumption of selected food plants. The results showed that poultry manure can contaminate food plants that may lead to cancer and non-cancer risks in agricultural areas, Pakistan. Thus, it is important to minimize As concentration in poultry feed to safeguard human health and environment from adverse effects.
Collapse
Affiliation(s)
- Juma Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Jian Qiang Su
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tasneem Sarwar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Shahla Nazneen
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Alamgir Khan
- Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| |
Collapse
|
7
|
Bech J. Environmental geochemistry and health (EGAH) Special Issue "reclamation of polluted soils for food production and human health: part 2". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1425-1429. [PMID: 34989958 DOI: 10.1007/s10653-021-01181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|