1
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Li H, Marie Kirkelund G. Pulsed stirring for energy efficiency improvements during electrodialytic extraction of As, Cd, Cr, Cu, Pb, and Zn from municipal solid waste incineration fly ash and air pollution control residue. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Yang J, Sun L, Shen X, Dai M, Ali I, Peng C, Naz I. An overview of the methods for analyzing the chemical forms of metals in plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1418-1430. [PMID: 35148204 DOI: 10.1080/15226514.2022.2033687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently, the occurrence of toxic levels of metals in soils is a serious environmental issue worldwide. Phytoremediation is getting much attention to control metals soil pollution because it is economic and environmentally friendly. However, the methods used to detect metals in plants are not uniform and have depicted poor comparability of the research investigations. Therefore, the present overview is designed to discuss the possible chemical forms of metals in various environmental matrixes and the detection methods employed to identify the chemical forms of metals in plants. Moreover, the in situ and indirect methods to detect metals in plants have also been discussed herein. In addition, the pros and cons of the available techniques have also been critically analyzed and discussed. Finally, key points/challenges and future perspectives of these methods have been highlighted for the scientific community.Novelty statementIn the current review, the possible chemical forms of metals in various environmental matrixes are discussed in detail. Various extraction agents and their efficiency for extracting metals from plants have been clearly illustrated. Further, all the available methods for analyzing the chemical forms of metals in plants have been compared.
Collapse
Affiliation(s)
- Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Min Dai
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, China
| | - Imran Ali
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, Kingdom of Saudi Arabia (KSA)
| |
Collapse
|