1
|
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce ( Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3222. [PMID: 39599431 PMCID: PMC11598719 DOI: 10.3390/plants13223222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study focuses on the physiological response of lettuce grown on Technosols designed for the remediation of soils polluted by potentially harmful elements (PHEs: As, Cd, Cu, Fe, Pb, and Zn). Lettuce plants were grown in five treatments: recovered (RS) and polluted soil (PS) as controls, and three Technosols (TO, TS, and TV) consisting of 60% PS mixed with 2% iron sludge, 20% marble sludge, and 18% organic wastes (TO: composted olive waste, TS: composted sewage sludge, and TV: vermicompost of garden waste). The main soil properties and PHE solubility were measured, together with physiological parameters related to phytotoxicity in lettuce such as growth, photosynthetic capacity, oxidative stress, and antioxidant defence. All Technosols improved unfavourable conditions of PS (i.e., neutralised acidity and enhanced OC content), leading to a significant decrease in Cd, Cu, and Zn mobility. Nevertheless, TV was the most effective as the reduction in PHEs mobility was higher. Furthermore, lettuce grown on TV and TO showed higher growth (+90% and +41%) than PS, while no increase in TS. However, lower oxidative stress and impact on photosynthetic rate occurred in all Technosols compared to PS (+344% TV, +157% TO, and +194% TS). This physiological response of lettuce proves that PHE phytotoxicity is reduced by Technosols. Thus, this ecotechnology constitutes a potential solution for soil remediation, with effectiveness of Technosols depending largely on its components.
Collapse
Affiliation(s)
- Mateo González-Quero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Antonio Aguilar-Garrido
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Mario Paniagua-López
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Manuel Sierra-Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| |
Collapse
|
2
|
Anemana TA, Buri M, Tay C. Iodide- and electrochemical assisted removal of mercury by Cirsium arvense from gold tailings in the Amansie West District, Ghana. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2266-2277. [PMID: 39120257 DOI: 10.1080/15226514.2024.2386302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.
Collapse
Affiliation(s)
| | - Mohammed Buri
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| | - Collins Tay
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| |
Collapse
|
3
|
Forján R, Arias-Estévez M, Gallego JLR, Santos E, Arenas-Lago D. Biochar-nanoparticle combinations enhance the biogeochemical recovery of a post-mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172451. [PMID: 38641107 DOI: 10.1016/j.scitotenv.2024.172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Here we addressed the capacity of distinct amendments to reduce arsenic (As), copper (Cu), selenium (Se) and zinc (Zn) associated risks and improve the biogeochemical functions of post-mining soil. To this, we examined nanoparticles (NPs) and/or biochar effects, combined with phytostabilization using Lolium perenne L. Soil samples were taken in a former metal mine surroundings. Ryegrass seeds were sown in pots containing different combinations of NPs (zero-valent iron (nZVI) or hydroxyapatite (nH)) (0 and 2 %), and biochar (0, 3 and 5 %). Plants were grown for 45 days and the plant yield and element accumulation were evaluated, also soil properties (element distribution within the soil fractions, fertility, and enzymatic activities associated with microbiota functionality and nutrient cycling) were determined. Results showed biochar-treated soil had a higher pH, and much higher organic carbon (C) content than control soil and NP-treated soils, and it revealed increased labile C, total N, and available P concentrations. Soil treatment with NP-biochar combinations increased exchangeable non-acid cation concentrations and reduced exchangeable Na%, improved soil fertility, reduced sodicity risk, and increased ryegrass biomass. Enzymatic activities, particularly dehydrogenase and glucosidase, increased upon the addition of biochar, and this effect was fostered by NPs. Most treatments led to a significant reduction of metal(loid)s contents in biomass, mitigating contamination risks. The two different NPs had similar effects in many parameters, nH outperformed nZVI in terms of increased nutrients, C content, and enzymatic activities. On the basis of our results, combined biochar-NP amendments use, specially nH, emerges as a potential post-mining soil restoration strategy.
Collapse
Affiliation(s)
- Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain; Department of Organisms and Systems Biology, University of Oviedo, Mieres, Asturias, Spain.
| | - Manuel Arias-Estévez
- Department of Plant Biology and -Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, 32004 Ourense, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - Erika Santos
- Universidade de Lisboa, Instituto Superior de Agronomia, Associate Laboratory TERRA, LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Daniel Arenas-Lago
- Department of Plant Biology and -Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
4
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Christou A, Charilaou E, Zissimos A, Neocleous D, Dalias P, Zorpas AA, Stylianou M. Compost-assisted revegetation of highly phytotoxic sulfidic tailings with Medicago sativa L. plants grown from the seed to seedpod stage under greenhouse experimental mesocosms conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119185. [PMID: 37797516 DOI: 10.1016/j.jenvman.2023.119185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The revegetation of highly phytotoxic sulfidic tailings is a challenging task which may often be successfully accomplished only following the addition of soil amendments. This study evaluated the use of green compost at increasing rates (10, 25 and 50% v/v) for the revegetation of extremely acidic sulfidic tailings of the North Mathiatis mine, Cyprus, with the use of alfalfa (Medicago sativa L.) plants, under greenhouse conditions. Alfalfa seeds were successfully germinated in tailings amended either with 25% or 50% (v/v) compost (52 and 85%, respectively). Plants managed to complete their life cycle and produce seeds only in the tailings amended with 50% (v/v) compost, since plants grown in tailings amended with lower rates of compost (i.e., 10 or 25% v/v) showed severe symptoms of phytotoxicity and eventually died. The amendment of tailings with 50% (v/v) green compost resulted in increased pH values, water holding capacity and organic content levels, soil respiration rates, as well as changes in soil elemental composition compared with tailings alone treatment, which in turn facilitated the growth and development of alfalfa plants during the whole experimental period (140 days). Plants managed to reach the late seedpod growth stage, indicating their potential regeneration and continual existence to the amended tailings, simultaneously uncovering the development of favorable conditions in the rhizosphere for the successful revegetation of studied tailings.
Collapse
Affiliation(s)
- Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus.
| | - Evgenia Charilaou
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus
| | - Andreas Zissimos
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, P.O. Box 24543, 1301, Nicosia, Cyprus
| | - Damianos Neocleous
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus
| | - Panagiotis Dalias
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus
| | - Antonis A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus
| | - Marinos Stylianou
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus
| |
Collapse
|
6
|
Aguilar-Garrido A, Romero-Freire A, Paniagua-López M, Martínez-Garzón FJ, Martín-Peinado FJ, Sierra-Aragón M. Technosols Derived from Mining, Urban, and Agro-Industrial Waste for the Remediation of Metal(loid)-Polluted Soils: A Microcosm Assay. TOXICS 2023; 11:854. [PMID: 37888704 PMCID: PMC10610840 DOI: 10.3390/toxics11100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
This study evaluated the effectiveness of six Technosols designed for the remediation of polluted soils (PS) by metal(loid)s at physicochemical, biological, and ecotoxicological levels and at a microcosm scale. Technosols T1-T6 were prepared by combining PS with a mix of organic and inorganic wastes from mining, urban, and agro-industrial activities. After two months of surface application of Technosols on polluted soils, we analysed the soil properties, metal(loid) concentration in total, soluble and bioavailable fractions, soil enzymatic activities, and the growth responses of Trifolium campestre and Lactuca sativa in both the Technosols and the underlying polluted soils. All Technosols improved the unfavourable conditions of polluted soils by neutralising acidity, increasing the OC, reducing the mobility of most metal(loid)s, and stimulating both the soil enzymatic activities and growths of T. campestre and L. sativa. The origin of organic waste used in the Technosols strongly conditioned the changes induced in the polluted soils; in this sense, the Technosols composed of pruning and gardening vermicompost (T3 and T6) showed greater reductions in toxicity and plant growth than the other Technosols composed with different organic wastes. Thus, these Technosols constitute a potential solution for the remediation of persistent polluted soils that should be applied in large-scale and long-term interventions to reinforce their feasibility as a cost-effective ecotechnology.
Collapse
Affiliation(s)
- Antonio Aguilar-Garrido
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (F.J.M.-G.); (F.J.M.-P.); (M.S.-A.)
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (F.J.M.-G.); (F.J.M.-P.); (M.S.-A.)
| | | | | | | | | |
Collapse
|
7
|
Aguilar-Garrido A, Reyes-Martín MP, Vidigal P, Abreu MM. A Green Solution for the Rehabilitation of Marginal Lands: The Case of Lablab purpureus (L.) Sweet Grown in Technosols. PLANTS (BASEL, SWITZERLAND) 2023; 12:2682. [PMID: 37514296 PMCID: PMC10385650 DOI: 10.3390/plants12142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Reclamation of abandoned mining areas can be a potentially viable solution to tackle three major problems: waste mismanagement, environmental contamination, and growing food demand. This study aims to evaluate the rehabilitation of mining areas into agricultural production areas using integrated biotechnology and combining Technosols with a multipurpose (forage, food, ornamental and medicinal) drought-resistant legume, the Lablab purpureus (L.) Sweet. Two Technosols were prepared by combining gossan waste (GW) from an abandoned mining area with a mix of low-cost organic and inorganic materials. Before and after plant growth, several parameters were analysed, such as soil physicochemical characteristics, nutritional status, bioavailable concentrations of potentially hazardous elements (PHE), soil enzymatic activities, and development and accumulation of PHE in Lablab, among others. Both Technosols improved physicochemical conditions, nutritional status and microbiological activity, and reduced the bioavailability of most PHE (except As) of GW. Lablab thrived in both Technosols and showed PHE accumulation mainly in the roots, with PHE concentrations in the shoots that are safe for cattle and sheep consumption. Thus, this is a potential plant that, in conjunction with Technosols, constitutes a potential integrated biotechnology approach for the conversion of marginal lands, such as abandoned mining areas, into food-production areas.
Collapse
Affiliation(s)
- Antonio Aguilar-Garrido
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - Marino Pedro Reyes-Martín
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - Patrícia Vidigal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Manuela Abreu
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
8
|
Bech J. Special Issue "Geochemistry, Soil Contamination and Human Health. Part 2.". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1667-1671. [PMID: 35028757 DOI: 10.1007/s10653-021-01180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|