1
|
Ghassemi-Golezani K, Latifi S, Farhangi-Abriz S. Biochar-mediated remediation of nickel and copper improved nutrient availability and physiological performance of dill plants. Sci Rep 2025; 15:13660. [PMID: 40254713 PMCID: PMC12009968 DOI: 10.1038/s41598-025-98646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The presence of heavy metals, such as copper and nickel, in the rhizosphere reduces the physiological efficiency and growth of plants. This study evaluated the effects of plum tree biochar levels (0, 15, 30, and 45 g kg-1 soil) with and without copper sulfate (200 mg kg-1 soil), nickel sulfate (400 mg kg-1 soil), and their combination on dill plants in a factorial experiment with a randomized complete block design in three replicates. The results indicated that the presence of copper and nickel in the soil had detrimental effects on the growth and physiological performance of dill. Specifically, copper stress alone reduced biomass by 31%, nickel stress by 27%, and their combined treatment by 37.7%. On the other hand, incorporating biochar into the soil decreased the uptake of heavy metals, oxidative stress, and the production of osmotic regulators in the plants, while enhanced nutrient uptake (N, K, Ca, Mg, Fe, and Zn), photosynthetic pigments, and plant biomass. Increasing biochar application rate in the soil did not have any additional beneficial effect on growth and physiological characteristics of plants. These results suggest that the low rate of biochar (15 g kg-1) from agricultural wastes is an appropriate soil amendment to remediate copper and nickel pollutants in the rhizosphere to enhance nutrient availability and plant performance. Future research could focus on the long-term efficacy of biochar under diverse field conditions, soil types, and plant species to optimize sustainable agricultural practices.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sedigheh Latifi
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Salar Farhangi-Abriz
- Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
2
|
Rahimzadeh S, Ghassemi-Golezani K. The roles of nanoparticle-enriched biochars in improving soil enzyme activities and nutrient uptake by basil plants under arsenic toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:307-315. [PMID: 39422506 DOI: 10.1080/15226514.2024.2416997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Enriched biochar with improved properties and functionality can play a significant role in providing sustainable solutions for mitigating heavy metal contamination in soil. In this experiment, the effects of solid and enriched biochars (potassium-enriched biochar (BC-K), magnesium-enriched biochar (BC-Mg), both individually and combined) were examined on soil microbial and enzyme activities, as well as nutrient uptake by basil plants cultivated in a soil with three levels of arsenic (nontoxic, 50 mg As kg-1 soil, and 100 mg As kg-1 soil). Biochar-related treatments, increased soil organic matter (65-76%), while decreased availability of arsenic (6-55%) in the soil. The microbial biomass carbon (by about 123%) and soil basal respiration (by about 256%), and soil enzymatic activities (β-glucosidase, urease, alkaline phosphatase, and dehydrogenase) were enhanced by enriched biochars under arsenic toxicity. The solid and particularly enriched biochars decreased arsenic content and improved nitrogen and phosphorus contents of roots and shoots, root length, root activity, and root and shoot biomass in basil plants. Therefore, it is conceivable to suggest that enriched biochars are superior treatments for improving nutrient absorption rates and basil growth under arsenic toxicity through decreasing arsenic mobility and increasing soil microbial activities.
Collapse
Affiliation(s)
- Saeedeh Rahimzadeh
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Khanchi S, Hashemi Khabir SH, Hashemi Khabir SH, Golmoghani Asl R, Rahimzadeh S. The role of magnesium oxide foliar sprays in enhancing mint (Mentha crispa L.) tolerance to cadmium stress. Sci Rep 2024; 14:14823. [PMID: 38937645 PMCID: PMC11211327 DOI: 10.1038/s41598-024-65853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigates using magnesium foliar spray to enhance mint plants' growth and physiological performance under cadmium toxicity. It examines the effects of foliar application of magnesium oxide (40 mg L-1), in both nano and bulk forms, on mint plants exposed to cadmium stress (60 mg kg-1 soil). Cadmium stress reduced root growth and activity, plant biomass (32%), leaf hydration (19%), chlorophyll levels (27%), magnesium content (51%), and essential oil yield (35%), while increasing oxidative and osmotic stress in leaf tissues. Foliar application of magnesium increased root growth (32%), plant biomass, essential oil production (17%), leaf area (24%), chlorophyll content (10%), soluble sugar synthesis (33%), and antioxidant enzyme activity, and reduced lipid peroxidation and osmotic stress. Although the nano form of magnesium enhanced magnesium absorption, its impact on growth and physiological performance was not significantly different from the bulk form. Therefore, foliar application of both forms improves plants' ability to withstand cadmium toxicity. However, the study is limited by its focus on a single plant species and specific environmental conditions, which may affect the generalizability of the results. The long-term sustainability of such treatments could provide a more comprehensive understanding of magnesium's role in mitigating heavy metal stress in plants.
Collapse
Affiliation(s)
- Soheil Khanchi
- Department of Agronomy, Islamic Azad University of Sanandaj, Sanandaj, Iran
| | | | | | - Reza Golmoghani Asl
- Department of Agronomy and Plant Breeding, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Pathak HK, Chauhan PK, Seth CS, Dubey G, Upadhyay SK. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172116. [PMID: 38575037 DOI: 10.1016/j.scitotenv.2024.172116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Climate change, food insecurity, and agricultural pollution are all serious challenges in the twenty-first century, impacting plant growth, soil quality, and food security. Innovative techniques are required to mitigate these negative outcomes. Toxic heavy metals (THMs), organic pollutants (OPs), and emerging contaminants (ECs), as well as other biotic and abiotic stressors, can all affect nutrient availability, plant metabolic pathways, agricultural productivity, and soil-fertility. Comprehending the interactions between root exudates, microorganisms, and modified biochar can aid in the fight against environmental problems such as the accumulation of pollutants and the stressful effects of climate change. Microbes can inhibit THMs uptake, degrade organic pollutants, releases biomolecules that regulate crop development under drought, salinity, pathogenic attack and other stresses. However, these microbial abilities are primarily demonstrated in research facilities rather than in contaminated or stressed habitats. Despite not being a perfect solution, biochar can remove THMs, OPs, and ECs from contaminated areas and reduce the impact of climate change on plants. We hypothesized that combining microorganisms with biochar to address the problems of contaminated soil and climate change stress would be effective in the field. Despite the fact that root exudates have the potential to attract selected microorganisms and biochar, there has been little attention paid to these areas, considering that this work addresses a critical knowledge gap of rhizospheric engineering mediated root exudates to foster microbial and biochar adaptation. Reducing the detrimental impacts of THMs, OPs, ECs, as well as abiotic and biotic stress, requires identifying the best root-associated microbes and biochar adaptation mechanisms.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | | | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India.
| |
Collapse
|
5
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Pudake RN, Pallavi. Novel application of bio-based nanomaterials for the alleviation of abiotic stress in crop plants. NANOTECHNOLOGY FOR ABIOTIC STRESS TOLERANCE AND MANAGEMENT IN CROP PLANTS 2024:181-201. [DOI: 10.1016/b978-0-443-18500-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1163451. [PMID: 37223815 PMCID: PMC10200947 DOI: 10.3389/fpls.2023.1163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
Drought stress (DS) is a potential abiotic stress that is substantially reducing crop productivity across the globe. Likewise, salinity stress (SS) is another serious abiotic stress that is also a major threat to global crop productivity. The rapid climate change increased the intensity of both stresses which pose a serious threat to global food security; therefore, it is urgently needed to tackle both stresses to ensure better crop production. Globally, different measures are being used to improve crop productivity under stress conditions. Among these measures, biochar (BC) has been widely used to improve soil health and promote crop yield under stress conditions. The application of BC improves soil organic matter, soil structure, soil aggregate stability, water and nutrient holding capacity, and the activity of both beneficial microbes and fungi, which leads to an appreciable increase in tolerance to both damaging and abiotic stresses. BC biochar protects membrane stability, improves water uptake, maintains nutrient homeostasis, and reduces reactive oxygen species production (ROS) through enhanced antioxidant activities, thereby substantially improving tolerance to both stresses. Moreover, BC-mediated improvements in soil properties also substantially improve photosynthetic activity, chlorophyll synthesis, gene expression, the activity of stress-responsive proteins, and maintain the osmolytes and hormonal balance, which in turn improve tolerance against osmotic and ionic stresses. In conclusion, BC could be a promising amendment to bring tolerance against both drought and salinity stresses. Therefore, in the present review, we have discussed various mechanisms through which BC improves drought and salt tolerance. This review will help readers to learn more about the role of biochar in causing drought and salinity stress in plants, and it will also provide new suggestions on how this current knowledge about biochar can be used to develop drought and salinity tolerance.
Collapse
Affiliation(s)
- Yanfang Wu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaodong Wang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xinliang Liu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Yueting Zhang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| |
Collapse
|
8
|
Rahimzadeh S, Ghassemi-Golezani K. The biochar-based nanocomposites improve seedling emergence and growth of dill by changing phytohormones and sugar signaling under salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67458-67471. [PMID: 37115437 DOI: 10.1007/s11356-023-27164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
Biochar-based nanocomposites (BNCs) with a high level of sodium sorption capacity may improve salinity tolerance and seedling establishment of dill. Thus, a pot experiment was conducted to evaluate the effects of solid biochar (30 g solid biochar kg-1 soil) and biochar-based nanocomposites of iron (BNC-FeO) and zinc (BNC-ZnO) in individual (30 g BNC kg-1 soil) and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill seedling growth in different levels of salt stress (non-saline, 6 and 12 dSm-1). Salinity caused a decrease in emergence percentage and emergence rate of seedlings. Increasing salinity of soil up to 12 dSm-1 decreased the biomass of dill seedlings by about 77%. Application of biochar and particularly BNCs increased the content of potassium, calcium, magnesium, iron, and zinc, reducing and non-reducing sugars, total sugars, invertase and sucrose synthase activities, leaf water content, gibberellic acid, and indole-3-acetic acid in dill plants, leading to an improvement in seedling growth (shoot length, root length, and dry weight) under saline conditions. Sodium content was noticeably decreased by BNC treatments (9-21%), which reduced mean emergence rate and stress phytohormones such as abscisic acid (31-43%), jasmonic acid (21-42%), and salicylic acid (16-23%). Therefore, BNCs especially in combined form can potentially improve emergence and growth of dill seedlings under salt stress, through reducing sodium content and endogenous stress hormones, and enhancing sugars and growth promoting hormones.
Collapse
Affiliation(s)
- Saeedeh Rahimzadeh
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
9
|
The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Sci Rep 2022; 12:21903. [PMID: 36536073 PMCID: PMC9763235 DOI: 10.1038/s41598-022-26578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The essential oil content and composition of medicinal plants may be influenced by eco-friendly products for nutrient availability under abiotic stresses. This research was conducted to determine the effects of biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and their combined form (15 + 15 g) on dill (Anethum graveolens L.) under salinity levels (non-saline, 6 and 12 dS m-1). Application of biochar, particularly BNCs increased iron and zinc content and decreased sodium accumulation in leaf tissues. The seed essential oil content increased under high salinity. Salinity changed the values of major compounds in essential oil and induced the formation of compounds such as alpha,2-dimethylstyrene, cuminyl alcohol, p-cymene, and linalool. Biochar treatments especially BNCs with a higher production of monoterpenes increased the levels of limonene, carvone, apiol, and dillapioll. All extracts showed a considerable DPPH-inhibitory effect with application of BNCs under salinity. The maximum antioxidant activity was observed under high level of salinity with application of the combined form. Therefore, the combined form of nanocomposite was the best treatment to improve the content of basic commercial monoterpenes and consequently antioxidant activity of essential oil in salt-stressed dill plants.
Collapse
|
10
|
Zulfiqar F, Moosa A, Nazir MM, Ferrante A, Ashraf M, Nafees M, Chen J, Darras A, Siddique KH. Biochar: An emerging recipe for designing sustainable horticulture under climate change scenarios. FRONTIERS IN PLANT SCIENCE 2022; 13:1018646. [PMID: 36544879 PMCID: PMC9760838 DOI: 10.3389/fpls.2022.1018646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The interest in sustainable horticulture has recently increased, given anthropogenic climate change. The increasing global population will exacerbate the climate change situation induced by human activities. This will elevate global food demands and the vulnerability of horticultural systems, with severe concerns related to natural resource availability and usage. Sustainable horticulture involves adopting eco-friendly strategies to boost yields while maintaining environmental conservation. Biochar (BC), a carbon-rich material, is widely used in farming to improve soil physical and chemical properties and as an organic substitute for peat in growing media. BC amendments to soil or growing media improve seedling growth, increase photosynthetic pigments, and enhances photosynthesis, thus improving crop productivity. Soil BC incorporation improves abiotic and biotic stress tolerance, which are significant constraints in horticulture. BC application also improves disease control to an acceptable level or enhance plant resistance to pathogens. Moreover, BC amendments in contaminated soil decrease the uptake of potentially hazardous metals, thus minimizing their harmful effects on humans. This review summarizes the most recent knowledge related to BC use in sustainable horticulture. This includes the effect of BC on enhancing horticultural crop production and inducing resistance to major abiotic and biotic stresses. It also discuss major gaps and future directions for exploiting BC technology.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Science, University of Florida, Apopka, FL, United States
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|