1
|
Bustamante M, Mei S, Daras IM, van Doorn G, Falcao Salles J, de Vos MG. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience 2025; 28:111534. [PMID: 39801834 PMCID: PMC11719859 DOI: 10.1016/j.isci.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Siyu Mei
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - Ines M. Daras
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - G.S. van Doorn
- University of Groningen – GELIFES, Groningen, the Netherlands
| | | | | |
Collapse
|
2
|
Phyu K, Zhi S, Liang J, Chang CC, Liu J, Cao Y, Wang H, Zhang K. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123864. [PMID: 38554837 DOI: 10.1016/j.envpol.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|