1
|
Zhang Y, Gao Y, Xi B, Li Y, Ge X, Gong Y, Chen H, Chen J, Tan W, Yuan Y. Full life cycle and sustainability transitions of phthalates in landfill: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:215-229. [PMID: 37717503 DOI: 10.1016/j.wasman.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phthalates (PAEs) are added to various products as a plasticizer. As these products age and are disposed of, plastic waste containing PAEs enters the landfill. The landfill environment is complicated and can be regarded as a "black box". Also, PAEs do not bind with the polymer matrix. Therefore, when a series of physical chemistry and biological reactions occur during the stabilization of landfills, PAEs leach from waste and migrate to the surrounding environmental media, thereby contaminating the surrounding soil, water ecosystems, and atmosphere. Although research on PAEs has achieved progress over the years, they are mainly concentrated on a particular aspect of PAEs in the landfill; there are fewer inquiries on the life cycle of PAEs. In this study, we review the presence of PAEs in the landfill in the following aspects: (1) the main source of PAEs in landfills; (2) the impact of the landfill environment on PAE migration and conversion; (3) distribution and transmedia migration of PAEs in aquatic ecosystems, soils, and atmosphere; and (4) PAE management and control in the landfill and future research direction. The purpose is to track the life cycle of PAEs in landfills, provide scientific basis for in-depth understanding of the migration and transformation of PAEs and environmental pollution control in landfills, and new ideas for the sustainable utilization of landfills.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Insights into the Titania (TiO2) Photocatalysis on the Removal of Phthalic Acid Esters (PAEs) in Water. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.3.15385.608-626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this era of globalization, plastic is regarded as one of the most versatile innovations, finding its uses ranging from packaging, automotive, agriculture, and construction to the medical and pharmaceutical industries. Unfortunately, the single-use nature of plastics leads to ecological and environmental problems. Among conventional disposal management of plastic waste are landfilling dumping, incineration, and recycling. However, not all plastic waste goes into disposal management and ends up accumulating in lakes, rivers, and seas. In the aquatic environment, the action of photochemical weathering plastics has resulted in the release of chemical additives such as phthalic acid esters (PAEs), an important plasticizer added to plastic products to improve their softness, flexibility, and durability. Nowadays, PAEs have been ubiquitously detected in our environment and numerous organisms are exposed to PAEs to some extent. As PAEs carry endocrine disruptive and carcinogenicity properties, an urgent search for the development of an efficient and effective method to remove PAEs from the environment is needed. As a viable option, titania (TiO2) photocatalysis is a promising tool to combat the PAEs contamination in our environment owing to its high photocatalytic activity, cost-effectiveness, and its ability to totally mineralize PAEs into carbon dioxide and water. Hence, this paper aims to highlight the concerning issue of the contamination of PAEs in our aquatic environments and the summary of the removal of PAEs by TiO2 photocatalysis. This review concerning the significance of knowledge on environmental PAEs would hopefully spark huge interest and future development to tackle this plastic-associated pollutant. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
3
|
Darko G, Obiri-Yeboah S, Takyi SA, Amponsah O, Borquaye LS, Amponsah LO, Fosu-Mensah BY. Urbanizing with or without nature: pollution effects of human activities on water quality of major rivers that drain the Kumasi Metropolis of Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:38. [PMID: 34935079 DOI: 10.1007/s10661-021-09686-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
The effects of urbanization such as population upsurge, increased industrialization, urban agriculture, and rural-urban migration of persons exert pressure on the limited water resources in most cities. This study investigated the impact of human activities on the water and sediment quality of the three main rivers (Wiwi, Subin, and Suntre) in Kumasi, the second-largest city in Ghana. The physicochemical parameters and the concentrations of contaminants, including heavy metals, polycyclic aromatic hydrocarbons, pesticide residues, and microbial loads in the rivers, were linked to the specific human activities at the riverbanks. While all the 37 pesticide residues investigated in river sediments had concentrations below the detection limits (0.005 mg/kg for organochlorines, 0.010 mg/kg for organophosphates, and 0.010 mg/kg for synthetic pyrethroids), the study showed that the sediments are polluted with petrogenic and pyrogenic polycyclic aromatic hydrocarbons. River Subin, the most polluted among the three rivers, recorded benzo[e]pyrene concentrations up to 47,169 µg/kg. The geoaccumulation index and concentration factors show that the rivers are highly contaminated with metals such as cadmium, chromium, mercury, and arsenic and are related to human activities. The microbial quality of the rivers was poor, recording specific microbial loads of 6.8, 4.1, and 1.5 × 107 counts/100 mL respectively for Wiwi, Subin, and the Suntre Rivers. The three water bodies are therefore not suitable for recreational and irrigational purposes.
Collapse
Affiliation(s)
- Godfred Darko
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Seth Obiri-Yeboah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Stephen Appiah Takyi
- Department of Planning, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Owusu Amponsah
- Department of Planning, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lydia Otoo Amponsah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benedicta Y Fosu-Mensah
- Institute for Environment and Sanitation Studies, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
4
|
Ewuzie U, Aku NO, Nwankpa SU. An appraisal of data collection, analysis, and reporting adopted for water quality assessment: A case of Nigeria water quality research. Heliyon 2021; 7:e07950. [PMID: 34585001 PMCID: PMC8450204 DOI: 10.1016/j.heliyon.2021.e07950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
The appropriate acquisition and processing of water quality data are crucial for water resource management. As such, published articles on water quality monitoring and assessment are meant to convey essential and reliable information to water quality experts, decision-makers, researchers, students, and the public. The implication is that such information must emanate from data obtained and analysed in an up-to-date, scientifically sound manner. Thus, inappropriate data analysis and reporting techniques could yield misleading results and mar the endeavours of achieving error-free conclusions. This study utilises the findings on water quality assessment in Nigeria over the last 20 years to reveal the likely trends in water quality research regarding data collection, data analysis, and reporting for physicochemical, bacteriological parameters, and trace organics. A total of 123 Web of Science and quartile ranked (Q1-Q4) published articles involving water quality assessment in Nigeria were analysed. Results indicated shortcomings in various aspects of data analysis and reporting. Consequently, we use simulated heatmaps and graphs to illustrate preferred ways of analysing, reporting, and visualising some regularly used descriptive and inferential statistics of water quality variables. Finally, we highlight alternative approaches to the customarily applied water quality assessment methods in Nigeria and emphasise other areas of deficiency that need attention for improved water quality research.
Collapse
Affiliation(s)
- Ugochukwu Ewuzie
- Analytical/Environmental Unit, Department of Pure and Industrial Chemistry, Abia State University, Nigeria
| | - Nnaemeka O Aku
- Medical Microbiology Unit, Department of Microbiology, University of Nigeria, Nsukka, Nigeria.,Public Health Unit, Department of Community Medicine, University of Nigeria, Enugu Campus, Nigeria
| | - Stephen U Nwankpa
- College of Pharmacy, Roseman University of Health Sciences, South Jordan UT, USA
| |
Collapse
|