1
|
Rufo-Pérez M, Antolín-Salazar A, Paniagua-Sánchez JM, Jiménez-Barco A, Rodríguez-Hernández FJ. Spatial and Temporal Mapping of RF Exposure in an Urban Core Using Exposimeter and GIS. SENSORS (BASEL, SWITZERLAND) 2025; 25:1301. [PMID: 40096075 PMCID: PMC11902647 DOI: 10.3390/s25051301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
The primary aim of this study was to evaluate the spatial and temporal variation in human exposure to electromagnetic fields across different frequency bands within an urban area identified as the commercial zone of a medium-sized city. Central to this investigation was the use of an exposimeter, strategically positioned on the back of the operator and secured to the hip area via a belt, to ensure comprehensive and accurate field measurements. An initial analysis was conducted to determine the shielding coefficients of the human body, allowing for precise corrections of the electric field values used in the spatial assessment. To map power density across the study area for each frequency, kriging interpolation was applied. Furthermore, temporal variations in exposure levels were analyzed at three distinct times of day-morning business hours, afternoon business hours, and non-business hours-using robust statistical methods. The study's innovative approach lies in the integration of GIS technology to uncover and visualize temporal patterns in exposure, particularly during periods of higher pedestrian density. This integration facilitated both the detection of temporal variations and the spatial representation of these changes, enabling rapid identification and assessment of exposure hotspots.
Collapse
Affiliation(s)
- Montaña Rufo-Pérez
- Department of Applied Physics, School of Technology, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.R.-P.); (J.M.P.-S.)
| | - Alicia Antolín-Salazar
- School of Technology, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (A.A.-S.)
| | - Jesús M. Paniagua-Sánchez
- Department of Applied Physics, School of Technology, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.R.-P.); (J.M.P.-S.)
| | - Antonio Jiménez-Barco
- Department of Applied Physics, School of Technology, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.R.-P.); (J.M.P.-S.)
| | | |
Collapse
|
2
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Suarez FL, Yepes SM, Escobar A. Assessment of the electromagnetic field exposure due to wireless communication technologies in two university campuses of medellin, Colombia. Heliyon 2023; 9:e20323. [PMID: 37809888 PMCID: PMC10560042 DOI: 10.1016/j.heliyon.2023.e20323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to radiofrequency electromagnetic fields (RF-EMFs) is considered an area of significant importance in the medical and scientific community. However, the availability of exposure data for indoor and outdoor locations in universities is limited and currently inconsiderate in Latin America. The aim of this work was to evaluate the electric field levels due to mobile telecommunication technologies and Wi-Fi to which students and faculty staff from two campuses of a higher education institution are exposed. Using a portable spectrum analyzer, we carried out 516 short-term measurements in the 800-3000 MHz frequency range at both indoor and outdoor locations. These locations were chosen to cover all areas of the assessed buildings. The electric field differences between floors and buildings are discussed. Finally, we compared the electric field levels with exposure limits. The highest electric field level measured was 13.97 V/m at the 850 MHz band. However, the average electric field values were below 2 V/m. The greatest contribution to the total electric field was due to sources using the 850 MHz and 1900 MHz bands (98%), while the contribution of the Wi-Fi network was low (1.0%). The results show that all the electric field levels measured were lower than the ICNIRP reference levels for radio-frequency exposure.
Collapse
Affiliation(s)
- Fabio L. Suarez
- Department of Electronics and Telecommunications, Faculty of Engineering, Instituto Tecnologico Metropolitano ITM, Medellin, Colombia
| | - Sara M. Yepes
- Department of Electronics and Telecommunications, Faculty of Engineering, Instituto Tecnologico Metropolitano ITM, Medellin, Colombia
| | - Adolfo Escobar
- Advanced Materials and Energy Research Group, Faculty of Engineering, Instituto Tecnologico Metropolitano ITM, Medellin, Colombia
| |
Collapse
|
4
|
Ramirez-Vazquez R, Escobar I, Moreno JJH, Martínez-Plaza A, Maffey S, Arribas E. Personal exposure from free Wi-Fi hotspots in downtown Mexico City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91216-91225. [PMID: 37474852 DOI: 10.1007/s11356-023-28839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
In 2019, the Government of Mexico City implemented actions that allowed citizens to approach a free Wi-Fi hotspot, where more than 13000 points have been installed throughout the city. In this work, we present the results of the measurements of personal exposure to Radiofrequency Electromagnetic Fields carried out in Plaza de la Constitución, better known as Zócalo located in the center of Mexico City. The measurements were taken by one of the researchers while walking on a weekday morning and afternoon, in different microenvironments (on the street, on public transport: subway, at the Zócalo, and finally, at home). We also carry out spot measurements in the center of the Zócalo. Subsequently, we carried out a comparative analysis of the different microenvironments, through box plot and violin plot, and we elaborate georeferenced and interpolated maps with intensity levels through the Kriging method, using the Geographic Information System. The Kriging interpolation gives us a good visualization of the spatial distribution of RF-EMF exposure in the study area, showing the highest and lowest intensity levels. The mean values recorded at the measured points in the Zócalo were 326 μW/m2 in the 2.4- to 2.5-GHz Wi-Fi band and 2370 μW/m2 in the 5.15- to 5.85-GHz Wi-Fi band. In the case of the mean values recorded on the street, they were 119 μW/m2 in the 2.4- to 2.5-GHz frequency band and 31.8 μW/m2 in the 5.15- to 5.85-GHz frequency band, like the values recorded at home, 122 μW/m2 and 33.9 μW/m2, respectively. All values are well below the reference levels established by the International Commission on Non-Ionizing Radiation Protection.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Faculty of Computer Science Engineering, Applied Physics Department, University of Castilla-La Mancha, Avda. de España s/n, University Campus, 02071, Albacete, Spain
- ESAT-WaveCoRE, Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Box 2444, 3001, Leuven, Belgium
| | - Isabel Escobar
- Faculty of Computer Science Engineering, Applied Physics Department, University of Castilla-La Mancha, Avda. de España s/n, University Campus, 02071, Albacete, Spain
| | - Juan José Hurtado Moreno
- Sección de Estudiantes de Posgrado e Investigación, UPIICSA-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Antonio Martínez-Plaza
- Mathematics Department, School of Industrial Engineering, University of Castilla-La Mancha, Avda. de España s/n, University Campus, 02071, Albacete, Spain
| | | | - Enrique Arribas
- Faculty of Computer Science Engineering, Applied Physics Department, University of Castilla-La Mancha, Avda. de España s/n, University Campus, 02071, Albacete, Spain.
| |
Collapse
|
5
|
Ramirez-Vazquez R, Escobar I, Vandenbosch GAE, Vargas F, Caceres-Monllor DA, Arribas E. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114979. [PMID: 36460078 DOI: 10.1016/j.envres.2022.114979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The last 25 years have seen an increase in the number of radiofrequency sources with the global adoption of smartphones as primary connectivity devices. The objective of this work was to review and evaluate the measured studies of personal exposure to Radiofrequency Electromagnetic Fields (RF-RMF) and meet the basic quality criteria eligible for inclusion in this Review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, following the eligibility criteria of the PECO (Population, Exposure, Comparator, and Outcome) methodology, and the instrument for critical reading Critical Appraisal Skills Programme Español (CASPe). We systematically reviewed the works published between January 1, 1998, and December 31, 2021, yielding 56 publications. Of the different types of studies in which personal exposure to RF-EMF has been measured with two measurement methodologies can be highlighted: Personal measurements with volunteers and Personal measurements with a trained researcher (touring a specific area, one or several microenvironments, an entire city, walking or in some means of transport). Personal exposimeters were used in 83% of the studies. The lowest mean was measured in Egypt with a value of 0.00100 μW/m2 (1.00 nW/m2) in 2007 and the highest mean was measured in Belgium with a value of 285000 μW/m2 (0.285 W/m2) in 2019. The results of our study confirm that RF-EMF exposure levels are well below the maximum levels established by the ICNIRP guidelines.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Isabel Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Guy A E Vandenbosch
- ESAT-WaveCoRE, Dep. of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Box 2444, 3001, Leuven, Belgium
| | | | | | - Enrique Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain.
| |
Collapse
|
6
|
Ramirez-Vazquez R, Escobar I, Martinez-Plaza A, Arribas E. Comparison of personal exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a Spanish university over three years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160008. [PMID: 36368387 DOI: 10.1016/j.scitotenv.2022.160008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work we present the personal exposure levels to Radiofrequency Electromagnetic Fields (RF-EMF) from Wireless Fidelity (Wi-Fi) 2.4 GHz and 5.85 GHz bands in a Spanish university, specifically, at the Faculty of Computer Science Engineering at the University of Castilla-La Mancha (Albacete, Spain). We present results from three years, 2017, 2018 and 2019 in the same study place and points; and measurements carried out in 2022 inside a classroom and inside a professor's office, with the aim to compare the measurements and verify compliance with reference levels established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The minimum average was 0.0900 μW/m2 in the 2.4 GHz Wi-Fi, in 2019, and the maximum average was 211 μW/m2 in the 5.85 GHz Wi-Fi in 2017, around the building. Comparing the measurements carried out inside the classroom with students and without students, we identified that the maximum value was 278 μW/m2 (classroom with students, in the 5.85 GHz Wi-Fi band) and the minimum value was 37.9 μW/m2 (classroom without students, in the 5.85 GHz Wi-Fi band). Finally, comparing the results of all the measurements (average values) inside the classroom and inside a professor's office, the maximum value was 205 μW/m2 (in the 5.85 GHz Wi-Fi band) inside the classroom with students, and the minimum value was 0.217 μW/m2 inside a professor's office (in the 2.4 GHz Wi-Fi band). These values in no case exceed the limits established by the International Commission on Non-Ionizing Radiation Protection, 10 W/m2 for general public exposure.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España s/n, University campus, 02071 Albacete, Spain
| | - Isabel Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España s/n, University campus, 02071 Albacete, Spain
| | - Antonio Martinez-Plaza
- University of Castilla-La Mancha, Mathematics Department, School of Industrial Engineering, Avda. de España s/n, University campus, 02071 Albacete, Spain
| | - Enrique Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España s/n, University campus, 02071 Albacete, Spain.
| |
Collapse
|
7
|
Martínez-González A, Monzó-Cabrera J, Martínez-Sáez AJ, Lozano-Guerrero AJ. Minimization of measuring points for the electric field exposure map generation in indoor environments by means of Kriging interpolation and selective sampling. ENVIRONMENTAL RESEARCH 2022; 212:113577. [PMID: 35636463 DOI: 10.1016/j.envres.2022.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In a world with increasing systems accessing to radio spectrum, the concern for exposure to electromagnetic fields is growing and therefore it is necessary to check limits in those areas where electromagnetic sources are working. Therefore, radio and exposure maps are continuously being generated, mainly in outdoor areas, by using many interpolation techniques. In this work, Surfer software and Kriging interpolation have been used for the first time to generate an indoor exposure map. A regular measuring mesh has been generated. Elimination of Less Significant Points (ELSP) and Geometrical Elimination of Neighbors (GEN) strategies to reduce the measuring points have been presented and evaluated. Both strategies have been compared to the map generated with all the measurements by calculating the root mean square and mean absolute errors. Results indicate that ELSP method can reduce up to 70% of the mesh measuring points while producing similar exposure maps to the one generated with all the measuring points. GEN, however, produces distorted maps and much higher error indicators even for 50% of eliminated measuring points. As a conclusion, a procedure for reducing the measuring points to generate radio and exposure maps is proposed based on the ELSP method and the Kriging interpolation.
Collapse
Affiliation(s)
- A Martínez-González
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain.
| | - J Monzó-Cabrera
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| | - A J Martínez-Sáez
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| | - A J Lozano-Guerrero
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| |
Collapse
|
8
|
Schmutz C, Bürgler A, Ashta N, Soenksen J, Bou Karim Y, Shen C, Smith RB, Jenkins RH, Mireku MO, Mutz J, Maes MJA, Hirst R, Chang I, Fleming C, Mussa A, Kesary D, Addison D, Maslanyj M, Toledano MB, Röösli M, Eeftens M. Personal radiofrequency electromagnetic field exposure of adolescents in the Greater London area in the SCAMP cohort and the association with restrictions on permitted use of mobile communication technologies at school and at home. ENVIRONMENTAL RESEARCH 2022; 212:113252. [PMID: 35421393 DOI: 10.1016/j.envres.2022.113252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Personal measurements of radiofrequency electromagnetic fields (RF-EMF) have been used in several studies to characterise personal exposure in daily life, but such data are limitedly available for adolescents, and not yet for the United Kingdom (UK). In this study, we aimed to characterise personal exposure to RF-EMF in adolescents and to study the association between exposure and rules applied at school and at home to restrict wireless communication use, likely implemented to reduce other effects of mobile technology (e.g. distraction). We measured exposure to RF-EMF for 16 common frequency bands (87.5 MHz-3.5 GHz), using portable measurement devices (ExpoM-RF), in a subsample of adolescents participating in the cohort Study of Cognition, Adolescents and Mobile Phones (SCAMP) from Greater London (UK) (n = 188). School and home rules were assessed by questionnaire and concerned the school's availability of WiFi and mobile phone policy, and parental restrictions on permitted mobile phone use. Adolescents recorded their activities in real time using a diary app on a study smartphone, while characterizing their personal RF-EMF exposure in daily life, during different activities and times of the day. Data analysis was done for 148 adolescents from 29 schools who recorded RF-EMF data for a median duration of 47 h. The majority (74%) of adolescents spent part of their time at school during the measurement period. Median total RF-EMF exposure was 40 μW/m2 at home, 94 μW/m2 at school, and 100 μW/m2 overall. In general, restrictions at school or at home made little difference for adolescents' measured exposure to RF-EMF, except for uplink exposure from mobile phones while at school, which was found to be significantly lower for adolescents attending schools not permitting phone use at all, compared to adolescents attending schools allowing mobile phone use during breaks. This difference was not statistically significant for total personal exposure. Total exposure to RF-EMF in adolescents living in Greater London tended to be higher compared to exposure levels reported in other European countries. This study suggests that school policies and parental restrictions are not associated with a lower RF-EMF exposure in adolescents.
Collapse
Affiliation(s)
- Claudia Schmutz
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Alexandra Bürgler
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Narain Ashta
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jana Soenksen
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Yasmin Bou Karim
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom
| | - Rachel B Smith
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Rosemary H Jenkins
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Public Health Policy Evaluation Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, Charing Cross Campus, The Reynolds Building, St Dunstan's Road, London, W6 8RP, United Kingdom
| | - Michael O Mireku
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; University of Lincoln, School of Psychology, Lincoln, United Kingdom
| | - Julian Mutz
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Mikaël J A Maes
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, United Kingdom; Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Rosi Hirst
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Irene Chang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Charlotte Fleming
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Aamirah Mussa
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Daphna Kesary
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Darren Addison
- UK Health Security Agency (UKHSA), Centre for Chemical, Radiation and Environmental Hazards, Harwell Campus, Oxon, OX11 0RQ, United Kingdom
| | - Myron Maslanyj
- UK Health Security Agency (UKHSA), Centre for Chemical, Radiation and Environmental Hazards, Harwell Campus, Oxon, OX11 0RQ, United Kingdom
| | - Mireille B Toledano
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Najera A, Ramis R, Las-Heras Andes F, Garcia-Pardo C, Alonso JI, Gonzalez-Rubio J, Hernando A, Martinez JL, Marcos FV. Comments on "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid". ENVIRONMENTAL RESEARCH 2022; 212:113314. [PMID: 35500852 DOI: 10.1016/j.envres.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Alberto Najera
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Rebeca Ramis
- Chronic Diseases Department, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.
| | - Fernando Las-Heras Andes
- Signal Theory and Communications (TSC-UNIOVI), Dept. of Electrical Engineering, University of Oviedo, Oviedo, Spain.
| | | | - Jose I Alonso
- Dpto. Señales, Sistemas y Radiocomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jesus Gonzalez-Rubio
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Antonio Hernando
- Instituto de Magnetismo Aplicado, Complutense University, Madrid, Spain; IMDEA, Nanociencia, Universidad Antonio de Nebrija, Madrid and Donosti International Physics Center, San Sebastián, Spain.
| | | | - Francisco Vargas Marcos
- Department: General Sub-Directorate of Environmental Health and Occupational Health, General Directorate of Public Health, Ministry of Health, Madrid, Spain.
| |
Collapse
|
10
|
Ramirez-Vazquez R, Gonzalez-Rubio J, Escobar I, Suarez Rodriguez CDP, Arribas E. Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041857. [PMID: 33673014 PMCID: PMC7918906 DOI: 10.3390/ijerph18041857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
In recent years, personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF) has substantially increased, and most studies about RF-EMF with volunteers have been developed in Europe. To the best of our knowledge, this is the first study carried out in Mexico with personal exposimeters. The main objective was to measure personal exposure to RF-EMF from Wireless Fidelity or wireless Internet connection (Wi-Fi) frequency bands in Tamazunchale, San Luis Potosi, Mexico, to compare results with maximum levels permitted by international recommendations and to find if there are differences in the microenvironments subject to measurements. The study was conducted with 63 volunteers in different microenvironments: home, workplace, outside, schools, travel, and shopping. The mean minimum values registered were 146.5 μW/m2 in travel from the Wi-Fi 2G band and 116.8 μW/m2 at home from the Wi-Fi 5G band, and the maximum values registered were 499.7 μW/m2 and 264.9 μW/m2 at the workplace for the Wi-Fi 2G band and the Wi-Fi 5G band, respectively. In addition, by time period and type of day, minimum values were registered at nighttime, these values being 129.4 μW/m2 and 93.9 μW/m2, and maximum values were registered in the daytime, these values being 303.1 μW/m2 and 168.3 μW/m2 for the Wi-Fi 2G and Wi-Fi 5G bands, respectively. In no case, values exceeded limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Of the study participants (n = 63), a subgroup (n = 35) answered a survey on risk perception. According to these results, the Tamazunchale (Mexico) population is worried about this situation in comparison with several European cities; however, the risk perception changes when they are informed about the results for the study.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
- Correspondence:
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
| | - Carmen del Pilar Suarez Rodriguez
- Department of Mechanical Engineering, Autonomous University of San Luis Potosi, Academic Coordination of the Huasteca South Region, Tamazunchale, San Luis Potosi 79960, Mexico;
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
| |
Collapse
|
11
|
Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1898. [PMID: 32183369 PMCID: PMC7142519 DOI: 10.3390/ijerph17061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the last two decades, due to the development of the information society, the massive increase in the use of information technologies, including the connection and communication of multiple electronic devices, highlighting Wi-Fi networks, as well as the emerging technological advances of 4G and 5G (new-generation mobile phones that will use 5G), have caused a significant increase in the personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF), and as a consequence, increasing discussions about the possible adverse health effects. The main objective of this study was to measure the personal exposure to radiofrequency electromagnetic fields from the Wi-Fi in the university area of German Jordanian University (GJU) and prepare georeferenced maps of the registered intensity levels and to compare them with the basic international restrictions. Spot measurements were made outside the university area at German Jordanian University. Measurements were made in the whole university area and around two buildings. Two Satimo EME SPY 140 (Brest, France) personal exposimeters were used, and the measurements were performed in the morning and afternoon, and on weekends and weekdays. The total average personal exposure to RF-EMF from the Wi-Fi band registered in the three study areas and in the four days measured was 28.82 μW/m2. The average total exposure from the Wi-Fi band registered in the ten measured points of the university area of GJU was 22.97 μW/m2, the one registered in the eight measured points of building H was 34.48 μW/m2, and the one registered in the eight points of building C was 29.00 μW/m2. The maximum average values registered in the campus of GJU are below the guidelines allowed by International Commission on Non-ionizing Radiation Protection (ICNIRP). The measurement protocol used in this work has been applied in measurements already carried out in Spain and Mexico, and it is applicable in university areas of other countries.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Sameer Arabasi
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Hussein Al-Taani
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Suhad Sbeih
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/ Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| |
Collapse
|