1
|
Ahmad N, Singh SP, Sahu S, Bhattacharyya R, Maurya AS, Kumar N, Rout RK, Tripathy GR. Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123964. [PMID: 38631445 DOI: 10.1016/j.envpol.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The knowledge of major sources, sinks, and the burial fate of various pollutants added to modern aquatic ecosystems under changing environmental conditions is limited but crucial for our sustainability. In this context, the spatial distributions and causative factors of organic matter (OM) and heavy metal accumulations have been explored in modern lacustrine sediments of a large urbanized and protected wetland (ULB: Upper Lake Bhopal) in Central India. For this purpose, geochemical properties, in particular, stable isotopes (δ13C and δ15N) were measured in the ULB surficial sediments (core depth ∼0-1 cm; n = 19), and additionally collected riverbed sediments (n = 2) and atmospheric free-fall dust samples (n = 3) from the lake periphery. The major and trace element data indicate widespread mafic sediment provenance and nearly dysoxic lacustrine conditions. The riverine supply of soil OM from cropped lands and the lake productivity (algae, largely sustained by nutrients from sewage and agricultural runoff) are the major OM sources to the western and eastern lake portions, respectively. The fractional contribution from autochthonous TOC (∼0.19-0.95, mean ∼0.62) predominates that of allochthonous TOC (∼0.05-0.81, mean ∼0.38). Whereas, atmospheric dust deposition is a primary anthropogenic source of heavy metals (Pb and Zn). The lake productivity rather than soil OM or any mineral sorbent is found responsible for the anthropogenic enrichments of Pb and Zn in the ULB surficial sediments, especially on the eastern ULB portion under high anthropogenic pressure. Therefore, the settled OM (primarily autochthonous) being oxidizable acts as a temporary but major sink of anthropogenic heavy metals in modern lacustrine sediments, which are vulnerable to heavy metal efflux to the water column by sediment diagenesis.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Satinder Pal Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| | - Shivam Sahu
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Rohan Bhattacharyya
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Abhayanand Singh Maurya
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nitish Kumar
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rakesh Kumar Rout
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gyana Ranjan Tripathy
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Sarma NS, Chiranjeevulu G, Pandi SR, Rao DB, Sarma VVSS. Coupling between chromophoric dissolved organic matter and dissolved inorganic carbon in Indian estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167120. [PMID: 37717775 DOI: 10.1016/j.scitotenv.2023.167120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
This study investigates the coupling between Chromophoric Dissolved Organic Matter (CDOM) and Dissolved Inorganic Carbon (DIC) in eighteen Indian estuaries across salinity gradient of the east and west coasts during the monsoon season, characterized by significant river discharge. The hypothesis that humic acids (HA) and fulvic acids (FA), prominent in estuarine CDOM, closely correspond to the 'organic alkalinity' (Aorg) component of total alkalinity is examined. In most estuaries, specifically those along the northeast coast (NE) and southwest coast (SW), a significant linear relationship exists between DIC, CDOM abundance, and pH level. Notably, minor estuaries along the southeast coast (SE) and northwest coast (NW) exhibit elevated DIC levels beyond what this relationship predicts. These estuaries also reveal heightened ammonium levels, increased δ15N values, and decreased δ13C values, indicative of anthropogenic influence. CDOM properties, such as spectral slope (S300-500) and spectral slope ratio (SR, S275-295:S350-400), align with these findings, with SE and NW estuaries displaying higher values. On average, CDOM contributes 110.5 μM (6.8 %) to DIC in NE, 390.7 μM (11 %) in SE, 24.4 μM (4.8 %) in SW, and 122.2 μM (4 %) in NW estuaries. The relationship between total alkalinity minus DIC (TA-DIC) and pH25 suggests that CDOM, mediated by HA/FA, buffers the inorganic carbon system in estuaries. This buffering capacity weakens at elevated DIC levels, and this condition is marked by anomalous SR values compared to the baseline salinity-SR linear regression. This Study suggests that estuarine CDOM could largely represent "organic alkalinity" and could help monitor acidification in estuaries.
Collapse
Affiliation(s)
- Nittala S Sarma
- Marine Chemistry Laboratory, Department of Chemistry, Andhra University, Visakhapatnam 530003, India.
| | - G Chiranjeevulu
- Marine Chemistry Laboratory, Department of Chemistry, Andhra University, Visakhapatnam 530003, India
| | - Sudarsana Rao Pandi
- Marine Chemistry Laboratory, Department of Chemistry, Andhra University, Visakhapatnam 530003, India
| | - Dokala Bhaskara Rao
- Marine Chemistry Laboratory, Department of Chemistry, Andhra University, Visakhapatnam 530003, India
| | - V V S S Sarma
- CSIR-National Institute of Oceanography Regional Centre, 176 Lawsons Bay Colony, Visakhapatnam 530017, India
| |
Collapse
|
3
|
Sahoo MM, Swain JB. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. MARINE POLLUTION BULLETIN 2023; 190:114894. [PMID: 37018906 DOI: 10.1016/j.marpolbul.2023.114894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sediments and surface water from 8 stations each from Dhamara and Paradeep estuarine areas were sampled for investigation of heavy metals, Cd, Cu, Pb, Mn, Ni, Zn, Fe, and Cr contamination. The objective of the sediment and surface water characterization is to find the existing spatial and temporal intercorrelation. The sediment accumulation index (Ised), enrichment index (IEn), ecological risk index (IEcR) and probability heavy metals (p-HMI) reveal the contamination status with Mn, Ni, Zn, Cr, and Cu showing permissible (0 ≤ Ised ≤ 1, IEn ˂ 2, IEcR ≤ 150) to moderate (1 ≤ Ised ≤ 2, 40 ≤ Rf ≤ 80) contamination. The p-HMI reflects the range from excellent (p-HMI = 14.89-14.54) to fair (p-HMI = 22.31-26.56) in off shore stations of the estuary. The spatial patterns of the heavy metals load index (IHMc) along the coast lines indicate that the pollution hotspots are progressively divulged to trace metals pollution over time. Heavy metal source analysis coupled with correlation analysis and principal component analysis (PCA) was used as a data reduction technique, which reveals that the heavy metal pollution in marine coastline might originate from redox reactions (FeMn coupling) and anthropogenic sources.
Collapse
|
4
|
Ultrasonic-assisted d-µ-SPE based on amine-functionalized KCC-1 for trace detection of lead and cadmium ion by GFAAS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Elemental Associations in Stream and Alluvial Sediments of the Savinja and Voglajna Rivers (Slovenia, EU) as a Result of Natural Processes and Anthropogenic Activities. MINERALS 2022. [DOI: 10.3390/min12070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stream and alluvial sediments of the Savinja and Voglajna rivers were sampled, and sediment fractions <0.063 and 0.063–0.125 mm were analyzed on the content of 60 of the main and trace elements. The objective was to determine elemental associations and identify possible sources of these associations. Differences of Al/Ti oxides ratio (9.7–26) can be attributed to the variations in the source rocks, while the K/Al oxides ratio indicates erosional or depositional river regime and variation in source rocks. One anthropogenic and three natural associations of elements were identified. The anthropogenic association (Ag, In, Sb, Cu, As, Zn, Pb, Cd, Bi, Mo and Sn) is linked to historic Zn smelting in the Celje area, and the subsequent erosion of the material from inadequately managed pyrometallurgical waste deposit. The second association (Li, Sc, Al, V, Cs and Ga) is linked to clay minerals, the third one (Mg, Ca and Te) to carbonate rocks, and the fourth one (Hf, Zr) to the heavy mineral fraction.
Collapse
|