1
|
Chen K, Gu X, Cai M, Zhao W, Wang B, Yang H, Liu X, Li X. Emission characteristics, environmental impacts and health risk assessment of volatile organic compounds from the typical chemical industry in China. J Environ Sci (China) 2025; 149:113-125. [PMID: 39181627 DOI: 10.1016/j.jes.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 08/27/2024]
Abstract
To study the volatile organic compounds (VOCs) emission characteristics of industrial enterprises in China, 6 typical chemical industries in Yuncheng City were selected as research objects, including the modern coal chemical industry (MCC), pharmaceutical industry (PM), pesticide industry (PE), coking industry (CO) and organic chemical industry (OC). The chemical composition of 91 VOCs was quantitatively analyzed. The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m3. Alkanes were the main emission components of MCC (62.0%), PE (55.1%), and OC (58.5%). Alkenes (46.5%) were important components of PM, followed by alkanes (23.8%) and oxygenated volatile organic compounds (OVOCs) (21.2%). Halocarbons (8.6%-71.1%), OVOCs (9.7%-37.6%) and alkanes (11.2%-27.0%) were characteristic components of CO. The largest contributor to OFP was alkenes (0.6%-81.7%), followed by alkanes (9.3%-45.9%), and the lowest one was alkyne (0%-0.5%). Aromatics (66.9%-85.4%) were the largest contributing components to SOA generation, followed by alkanes (2.6%-28.5%), and the lowest one was alkenes (0%-4.1%). Ethylene and BTEX were the key active species in various chemical industries. The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work, and BTEX and dichloromethane were the largest contributors.
Collapse
Affiliation(s)
- Kaitao Chen
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xin Gu
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Min Cai
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Weicheng Zhao
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Boxuan Wang
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Haoran Yang
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xingru Li
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
2
|
Chen Y, Qiu J, Xu K, Zhu H, Zhang S, Lu X, Li X. Development of a portable gas chromatograph-mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds. Analyst 2025; 150:470-480. [PMID: 39749774 DOI: 10.1039/d4an01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS. The refrigeration module adopts a thermoelectric cooler (TEC), and a heating wire directly heats the adsorption tube to reduce the heat capacity. The miniaturization and low-power design make this module integrable into portable GC-MS devices. This module can reduce the temperature to around 0 °C within ten minutes for sample enrichment, and the heating system can increase the temperature to 260 °C within 20 seconds to ensure rapid desorption and injection of samples. Due to the miniaturization design, the total weight of the portable GC-MS is 21.7 kg, and the volume is 48 cm × 38 cm × 17 cm. Within merely 10 minutes, it completely separated and detected 65 VOCs in the TO-15 standard substance, with a detection limit down to 0.12 μg L-1 for toluene. The detection performance for low-boiling substances could be enhanced by up to 17 times compared to ambient temperature adsorption thermal desorption, such as 1,3-butadiene. Moreover, the results demonstrated long-term stability (RSD < 10% for 98% of the substances, with recovery rates from 91.66% to 109.12%). This study provides a feasible strategy for the rapid and reliable detection of VOCs in the air, holding great potential in the field of environmental monitoring.
Collapse
Affiliation(s)
- Yulin Chen
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Junwei Qiu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Kai Xu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Huijun Zhu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Shuo Zhang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Xinxin Lu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| | - Xiaoxu Li
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
3
|
Chen S, He Y, Jiang M, You Q, Ma X, Xu Z, Bo X. Unveiling the importance of VOCs from pesticides applicated in main crops for elevating ozone concentrations in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133385. [PMID: 38160558 DOI: 10.1016/j.jhazmat.2023.133385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Volatile organic compounds (VOCs) are considered as important precursors of ozone in the air, while the contribution of VOCs from pesticide application (PVOCs) to ozone production is unknown. Utilizing data from the Ministry of Agriculture and Rural Affairs of the People's Republic of China and ChinaCropPhen1km, this paper developed PVOC emission inventories with a resolution of 1 km for the main crops (rice, maize, and wheat) from 2012 to 2019 in China. The results revealed that pesticide application is an important VOC emission source in China. Specially, the PVOC emissions from the major grain-producing regions in June accounted for approximately 30% of the annual total PVOC emissions in the local regions. The simulation with the Weather Research and Forecasting Community Multiscale Air Quality model (WRF-CMAQ) indicated that the PVOC emissions increased the mean maximum daily 8-hour average (MDA8) ozone concentration across China by 2.5 ppb in June 2019. During the same period, PVOCs in the parts of North China Plain contributed 10% of the ozone formation. Under the comprehensive emission reduction scenario, it is anticipated that by 2025, the joint implementation of measures including reducing pesticide application, improving pesticide utilization efficiency and promoting solvent substitution will decrease PVOC emissions by 60% compared with 2019, thereby mitigating ozone pollution.
Collapse
Affiliation(s)
- Shaobo Chen
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Youjiang He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mengyun Jiang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian You
- Capital University of Economics and Business, Beijing 100070, China
| | - Xiaotian Ma
- School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Bo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Mangotra A, Singh SK. Volatile organic compounds: A threat to the environment and health hazards to living organisms - A review. J Biotechnol 2024; 382:51-69. [PMID: 38242502 DOI: 10.1016/j.jbiotec.2023.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) are the organic compounds having a minimum vapor pressure of 0.13 kPa at standard temperature and pressure (293 K, 101 kPa). Being used as a solvent for organic and inorganic compounds, they have a wide range of applications. Most of the VOCs are non-biodegradable and very easily become component of the environment and deplete its purity. It also deteriorates the water quality index of the water bodies, impairs the physiology of living beings, enters the food chain by bio-magnification and degrades, decomposes and manipulates the physiology of living organisms. To unveil the adverse impacts of volatile organic compounds (VOCs) and their rapid eruption and interference in the living world, a review has been designed. This review presents an insight into the currently available VOCs, their sources, applications, sampling methods, analytic procedures, imposition on the health of aquatic and terrestrial communities and their contamination of the environment. Elaboration has been done on representation of toxicological effects of VOCs on vertebrates, invertebrates, and birds. Subsequently, the role of environmental agencies in the protection of environment has also been illustrated.
Collapse
Affiliation(s)
- Anju Mangotra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| | - Shailesh Kumar Singh
- School of Agriculture, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| |
Collapse
|
5
|
Wang W, Chen H, Zhu W, Gong Z, Yin H, Gao C, Zhu A, Wang D. A two-staged adsorption/thermal desorption GC/MS online system for monitoring volatile organic compounds. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:869. [PMID: 37347444 DOI: 10.1007/s10661-023-11431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/27/2023] [Indexed: 06/23/2023]
Abstract
Real-time online monitoring of volatile organic compounds (VOCs) in ambient air is crucial for timely and effective human health protection. Here, we developed an innovative, automated two-staged adsorption/thermal desorption gas chromatography/mass spectrometry (GC/MS) system for real-time online monitoring of 117 regulated volatile organic compounds (VOCs). This system comprised a sampling unit, water management trap, two-staged adsorption/thermal desorption unit, thermoelectric coolers (TECs), and a commercial GC/MS system. By implementing a micro-purge-and-trap (MP & T) step and a two-staged adsorption/thermal desorption unit, the presence of interfering substances was effectively minimized. The utilization of a heart-cutting GC, combined with a single MS detector, facilitated the precise separation and detection of 117 C2-C12 VOCs, while circumventing the identification and coelution challenges commonly associated with traditional GC-FID or GC-FID/MS methods. The performance of our newly developed online system was meticulously optimized and evaluated using standard gas mixtures. Under optimal conditions, we achieved impressive results, with R2 values ≥ 0.9946 for the standard linear curves of all 117 VOCs, demonstrating a precision (RSD) ranging from 0.2% to 6.4%. When applied in the field monitoring, the concentration drifts for 10 ppbv standard gas mixtures were 0.01-5.64% within 24 h. Our study developed a system for online monitoring of 117 atmospheric VOCs with relatively high accuracy and robustness.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Leisure Tourism, Chengdu Agricultural College, Chengdu, 611130, China
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
| | - Wei Zhu
- Sichuan Branch, Shimadzu (China) Co., LTD, Chengdu, 610031, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
- State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 610756, China.
| | - Hui Yin
- Sichuan Shengshi Technology Co., LTD, Chengdu, 610031, China
| | - Chao Gao
- Hebei Sailhero Environmental Protection High-Tech Co., LTD, Shijiazhuang, 050035, China
| | - Anni Zhu
- School of Leisure Tourism, Chengdu Agricultural College, Chengdu, 611130, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|