1
|
Ren H, Ren J, Tao L, Ren X. Risk Evaluation of Potentially Toxic Metals in Soils and Vegetables Surrounding Lanzhou City in Gansu Province, China. TOXICS 2025; 13:158. [PMID: 40137485 PMCID: PMC11946809 DOI: 10.3390/toxics13030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The potentially toxic metals in soil often cause secondary pollution of vegetables and pose a great threat to human health. Soil and vegetable samples were collected from eight different districts in the vegetable plantation base of Lanzhou city in Gansu province, and Zn, Cd, Cr, Cu, and Pb contents were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AMS). The results suggested that the Cr and Zn contents of soils in the eight plantation bases were much higher than those of the other three metals. The metal contents showed significant differences among plantation bases and vegetable species, and the mean potentially toxic metal concentrations in soils exceeded background levels by 1.1~3.0 times. The accumulation of Cu in vegetables was significantly higher than that of other metals. Remarkable differences were found among the vegetables in the uptake abilities of Zn, Cd, Cr, and Cu. There were significant positive relationships between potentially toxic metal accumulation in vegetables and in soils. The results may be used to provide referential strategies and methods to minimize the impact of potentially toxic metals on human health through the consumption and cultivation of vegetables.
Collapse
Affiliation(s)
- Hanru Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (J.R.); (L.T.)
- Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Jun Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (J.R.); (L.T.)
- Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Ling Tao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (J.R.); (L.T.)
- Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Xuechang Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (J.R.); (L.T.)
| |
Collapse
|
2
|
Tao M, Lu D, Shi Y, Liu K, Yan D, Memon MB. Life cycle assessment of coal mines of diverse scales over time in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169236. [PMID: 38072252 DOI: 10.1016/j.scitotenv.2023.169236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Coal mining has important detrimental effects on the environment and human health. By the end of 2022, China mined more than 4 billion tons of raw coal, and coal mining contributed to adverse environmental impacts. The objective of this work is to evaluate the environmental impacts emanated from coal mines in different periods (construction period, production period and closing period) and to find the relationship between coal mine scale and ecological impacts. This study uses coal mines that produce 0.45 Mt/a (considered a medium sized mine), 3 Mt/a and 8 Mt/a (both classified as large mines in this study) and a 12 Mt/a extra-large coal mine. Based on the time dimension, the mine life cycle was classified into construction, production and closing period, and the life cycle assessment method was used to conduct environmental assessment. The main influencing substances and key processes were tracked. The results indicated that mining engineering and gangue are the main factors affecting the construction and production periods of coal mines. Freshwater ecotoxicity, marine ecotoxicity, and human toxicity are the main environmental effects of coal produce, and they are mostly brought up by the release of hazardous elements like copper, chromium, zinc, nickel, and copper. Furan, formaldehyde, and chromium emissions during mine closure can be effectively reduced through environmental compensation, however coal mines' environmental compensation during mine closure is minimal. The environmental impact of coal mines producing 3 Mt and 8 Mt annually is minimal. The environmental impact of 0.45 Mt/a and 3 Mt/a coal mines is more prominent in the construction period. The pollutant discharge throughout the production phase, particularly the metal leaching discharge from gangue, needs to receive more attention from the 8 Mt/a and 12 Mt/a coal mines. Additionally, the larger the scale of coal mine production, the greater the proportion of the total environmental impact in the production stage.
Collapse
Affiliation(s)
- Ming Tao
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
| | - Daoming Lu
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Shi
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kai Liu
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Dongdong Yan
- Oilfield Exploration and Production Dept., China Petroleum & Chemical Corporation, Beijing 100728, China
| | - Muhammad Burhan Memon
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
3
|
Liu H, Wang H, Zhou J, Zhang Y, Wang H, Li M, Wang X. Environmental cadmium pollution and health risk assessment in rice-wheat rotation area around a smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:433-444. [PMID: 38012484 DOI: 10.1007/s11356-023-31215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cadmium (Cd) pollution induced by smelting process is of great concern worldwide. However, the comprehensive risk assessment of Cd exposures in smelting areas with farming coexist is lacking. In this study, atmospheric deposition, soil, surface and drinking water, rice, wheat, vegetable, fish, pork, and human hair samples were collected in rice-wheat rotation area near nonferrous smelter to investigate smelting effect on environmental Cd pollution and human health. Results showed high Cd deposition (0.88-2.61 mg m-2 year-1) combined with high bioavailability (37-42% totality) in study area. Moreover, 90%, 83%, 57%, and 3% of sampled soil, wheat, rice, and vegetable of Cd were higher than national allowable limits of China, respectively, indicating smelting induced serious environmental Cd pollution. Especially, higher Cd accumulation occurred in wheat compared to rice by factors of 1.5-2.0. However, as for Cd exposure to local residents, due to rice as staple food, rice intake ranked as main route and accounted for 49-53% of total intake, followed by wheat and vegetable. Cd exposure showed high potential noncarcinogenic risks with hazard quotient (HQ) of 0.63-4.99 using Monte Carlo probabilistic simulation, mainly from crop food consumption (mean 94% totality). Further, residents' hair Cd was significant correlated with HQ of wheat and rice ingestion, highlighting negative impact of cereal pollution to resident health. Therefore, smelting process should not coexist with cereal cultivating.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| |
Collapse
|
4
|
Ding Y, Xi L, Wu Y, Chen Y, Guo X, Shi H, Cai S. Spatial Differentiation Characteristics and Evaluation of Cu and Cd in Paddy Soil around a Copper Smelter. TOXICS 2023; 11:647. [PMID: 37624153 PMCID: PMC10457998 DOI: 10.3390/toxics11080647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
To accurately evaluate the distribution and bioavailability of potentially toxic elements (PTEs) such as Cu and Cd in farmlands near a copper smelter, we determined the total concentrations (Cu-T and Cd-T), various speciation concentrations of Cu and Cd and physicochemical properties of 18 paddy soil (or colloid) samples in Guixi town, Jiangxi province, China. The results showed that the concentrations of Cu-T and Cd-T in the soil around the smelter far exceeded the standard limits. Specifically, Cu ranged from 97.47 to 1294.63 mg·kg-1, with a coefficient of variation (CV) of 0.95; Cd ranged from 0.14 to 9.06 mg·kg-1, and the CV was 1.68. Furthermore, the pollution of PTEs continued to accumulate, posing a significant risk to the environment and human health. The findings from the analysis of soil and colloid indicated that the distribution characteristics of Cu and Cd speciations did not align with the total concentrations. The highest pollution points were found to be shifted to the residual fraction of Cu, organic fraction, and crystalline iron oxide fraction of Cd in soil. The dominant fraction of Cu in colloid was the amorphous iron oxide fraction, whereas Cd was the crystalline iron oxide fraction. The assessment of Cu and Cd migration (MR) revealed that Cd posed a greater ecological risk. Further examination of the properties of iron oxides in soil and colloid revealed that they played a crucial role in the migration and transformation of soil PTEs.
Collapse
Affiliation(s)
- Yuan Ding
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Li Xi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yujing Wu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yihong Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoping Guo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Hong Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- Jiangxi Key Laboratory of Agricultural Efficient Water-Saving and Non-Point Source Pollution Preventing, Jiangxi Central Station of Irrigation Experiment, Nanchang 330063, China
| | - Shuo Cai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.X.); (Y.W.); (Y.C.); (X.G.); (S.C.)
- Jiangxi Key Laboratory of Agricultural Efficient Water-Saving and Non-Point Source Pollution Preventing, Jiangxi Central Station of Irrigation Experiment, Nanchang 330063, China
| |
Collapse
|
5
|
Faragó T, Špirová V, Blažeková P, Lalinská-Voleková B, Macek J, Jurkovič Ľ, Vítková M, Hiller E. Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil-old burden in Bratislava city, Slovakia. Heliyon 2023; 9:e13605. [PMID: 36873465 PMCID: PMC9976324 DOI: 10.1016/j.heliyon.2023.e13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Municipal solid waste incineration (MSWI) is an effective method for reducing the volume/mass of waste. However, MSWI ashes contain high concentrations of many substances, including trace metal (loid)s, that could be released into the environment and contaminate soils and groundwater. In this study, attention was focused on the site near the municipal solid waste incinerator where MSWI ashes are deposited on the surface without any control. Here, combined results (chemical and mineralogical analyses, leaching tests, speciation modelling, groundwater chemistry and human health risk assessment) are presented to assess the impact of MSWI ash on the surrounding environment. The mineralogy of ∼forty years old MSWI ash was diverse, and quartz, calcite, mullite, apatite, hematite, goethite, amorphous glasses and several Cu-bearing minerals (e.g. malachite, brochantite) were commonly detected. In general, the total concentrations of metal (loid)s in MSWI ashes were high, following the order: Zn (6731 mg/kg) > Ba (1969 mg/kg) ≈ Mn (1824 mg/kg) > Cu (1697 mg/kg) > Pb (1453 mg/kg) > Cr (247 mg/kg) > Ni (132 mg/kg) > Sb (59.4 mg/kg) > As (22.9 mg/kg) ≈ Cd (20.6 mg/kg). Cadmium, Cr, Cu, Pb, Sb and Zn exceeded the indication or even intervention criteria for industrial soils defined by the Slovak legislation. Batch leaching experiments with diluted citric and oxalic acids that simulate the leaching of chemical elements under rhizosphere conditions documented low dissolved fractions of metals (0.00-2.48%) in MSWI ash samples, showing their high geochemical stability. Non-carcinogenic and carcinogenic risks were below the threshold values of 1.0 and 1 × 10-6, respectively, with soil ingestion being the most important exposure route for workers. The groundwater chemistry was unaffected by deposited MSWI ashes. This study may be useful in determining the environmental risks of trace metal (loid)s in weathered MSWI ashes that are loosely deposited on the soil surface.
Collapse
Affiliation(s)
- Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Veronika Špirová
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Petra Blažeková
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | | | - Juraj Macek
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.,The Center of Environmental Services, Ltd., Kutlíkova 17, 852 50 Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Hao H, Li P, Li Y, Lv Y, Chen W, Xu J, Ge D. Driving effects and transfer prediction of heavy metal(loid)s in contaminated courtyard gardens using redundancy analysis and multilayer perceptron. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:46. [PMID: 36308616 DOI: 10.1007/s10661-022-10683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The distribution and migration of heavy metal(loid)s in the soil-vegetable systems of courtyard gardens near mining areas have rarely been investigated, leading to potential food safety risks for residents. Moreover, the existing research is mainly focused on the total content of heavy metal(loid)s (tMetals) rather than the bioavailable contents (aMetals). In this study, 26 and 28 pairs of soil and vegetable samples were collected from the courtyard gardens near the Realgar mine in Baiyun Town and the lead-zinc (Pb-Zn) mine in Shuikoushan Town, respectively. The tMetal and aMetal of cadmium (Cd), mercury (Hg), arsenic (As), Pb, chromium (Cr), nickel (Ni), copper (Cu), Zn, manganese (Mn), iron (Fe), and calcium (Ca) in the samples were analyzed in this study. The results showed that courtyard gardens were polluted by various heavy metal(loid)s at varying degrees. The bioavailabilities of different metals varied significantly, among which Cd has the highest bioavailability (> 30%). In the transfer process of heavy metal(loid)s, the transfer rate (Tf) was ranked as soil-roots (1.50) > stems-leaves (1.07) > roots-stems (0.46) > stems-fruits (0.33). Redundancy analysis was used to evaluate the driving effects, and the results revealed that aCa, aZn, and aFe in soil could inhibit the absorption of aCd by plant roots. Soil organic matter was the inhibiting factor regarding the transfer of aAs and aCu, whereas it was also the promoting factor for transferring aPb, aNi, and aCr. Furthermore, the multilayer perceptron (MLP) could effectively predict the Tf of heavy metal(loid)s based on the aMetal. The R2 values of the MLP were ranked as follows: 0.91 for As, 0.88 for Zn, 0.85 for Hg, 0.83 for Cu, 0.79 for Cr, 0.66 for Cd, 0.65 for Pb, and 0.52 for Ni. This study emphasizes the aMetal-based ecological characteristics and prediction ability. The study results are significant for guiding residents to strategize appropriate crop planting and ensure the safe production and consumption of vegetables.
Collapse
Affiliation(s)
- Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Panpan Li
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Yuanyuan Li
- Hunan Pinbiao Huace Testing Technology Co., Ltd, Changsha, 410005, People's Republic of China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Jianjun Xu
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|