1
|
Nocito KD, Murugaiyan V, Ali J, Pandey A, Casal C, De Asis EJ, Dimaano NG. Genome-Wide Dissection of Novel QTLs and Genes Associated with Weed Competitiveness in Early-Backcross Selective Introgression-Breeding Populations of Rice ( Oryza sativa L.). BIOLOGY 2025; 14:413. [PMID: 40282278 PMCID: PMC12025310 DOI: 10.3390/biology14040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025]
Abstract
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona), significantly hinder DSR and cause substantial yield losses. This study aimed to develop rice cultivars competitive against jungle rice through selective breeding, focusing on early seed germination (ESG) and seedling vigor (ESV). We utilized 181 early-backcross selective introgression breeding lines (EB-SILs) developed using Green Super Rice (GSR) technology by backcrossing Weed Tolerant Rice1 (WTR1) with three donor parents, Haoannong, Cheng Hui 448, and Y134. Using the tunable genotyping-by-sequencing (tGBS®, Data2Bio Technologies, Ames, IA, USA) method, we identified 3971 common single nucleotide polymorphisms (SNPs) that facilitated the mapping of 19 novel quantitative trait loci (QTLs) associated with weed competitiveness-eight linked to ESG traits and eleven to ESV traits. Notably, all QTLs were novel except qRPH1, linked to relative plant height at 14 and 21 days after sowing. Key QTLs were located on chromosomes 2, 3, 5, 6, 8, 9, 10, and 12. Candidate genes identified within these QTLs are implicated in the plant's response to various abiotic and biotic stresses. Our findings enhance the understanding of the genetic basis for ESG and ESV traits critical for weed competitiveness, supporting marker-assisted and genomic selection approaches for breeding improved rice varieties. Furthermore, this research lays the groundwork for employing gene expression, cloning, and CRISPR editing strategies to combat jungle rice, with potential applications for other weed species and contributing to effective integrated weed management in the DSR system.
Collapse
Affiliation(s)
- Kim Diane Nocito
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Ambika Pandey
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Carlos Casal
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Erik Jon De Asis
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
| | - Niña Gracel Dimaano
- Rice Breeding Platform, International Rice Research Institute, Los Baños 4031, Laguna, Philippines; (K.D.N.); (V.M.); (A.P.); (C.C.J.); (E.J.D.A.)
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| |
Collapse
|
2
|
Zhang Q, Han B, Cui D, Zhao Z, Han L, Ma X. Genome-wide association study to identify candidate genes for submergence tolerance during rice seed germination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:45. [PMID: 39907743 DOI: 10.1007/s00122-025-04830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
KEY MESSAGE Submergence tolerance QTLs for rice germination were identified via a genome-wide association study, and a new causal gene, LOC_Os06g17260, was identified. Submergence stress is a major obstacle limiting the application of direct seeding in rice cultivation. Rapid bud and root growth helps plants establish a stronger growth base and improve their submergence tolerance. Therefore, mining genes for bud length (BL) and root length (RL) helps in the development of varieties that are adaptable to submergence and improve seedling emergence and yield of direct-seeded rice. In this study, a genome-wide association study of BL and RL was performed on a diverse rice collection consisting of 300 accessions. We identified a total of 37 QTLs, 13 of which had phenotypic contributions > 10%. The novel QTLs qBL6.2/qRL6.8, qBL6.3/qRL6.9, qBL6.4/qRL6.10, and qBL6.5/qRL6.11 on chromosome 6 were stably detected across BL and RL, and a total of 31 genes were detected in these four intervals. Concerning the gene annotation information and expression profiles, LOC_Os06g17090, LOC_Os06g17120, LOC_Os06g17140, LOC_Os06g17220, and LOC_Os06g17260 were selected as possible target genes. Through the validation of a knockout transgenic experiment, LOC_Os06g17260 was identified as the causal gene for submergence tolerance in rice at the germination stage. LOC_Os06g17260 encodes UDP-glucoronosyl and a UDP-glucosyl transferase domain-containing protein and contains two major haplotypes, with the Hap1 germplasm presenting greater submergence tolerance at the germination stage. These results provide new clues for exploring the molecular mechanisms that regulate submergence tolerance in rice and provide a promising source of genes for the molecular breeding of direct-seeded rice.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Chongqing Engineering Research Center of Specialty Crop Resources, Chongqing Normal University, Chongqing, 401331, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Di Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengwu Zhao
- Chongqing Engineering Research Center of Specialty Crop Resources, Chongqing Normal University, Chongqing, 401331, China.
| | - Longzhi Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Xiong D, Wang J, Wang R, Wang Y, Li Y, Sun G, Yao S. A point mutation in VIG1 boosts development and chilling tolerance in rice. Nat Commun 2024; 15:8212. [PMID: 39294143 PMCID: PMC11410800 DOI: 10.1038/s41467-024-52510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
The rice paddy-direct seeding system has been widely adopted due to its low cost and convenience, whereas its application is mainly constrained by low seedling vigor, cold sensitivity, eventually resulting in reduced grain yield. Here, we show vig1a and vig1b, two allelic mutants of OsbZIP01, that both demonstrate greatly enhanced seedling vigor and chilling tolerance but differ in final grain production. The vig1a phenotype can be obtained via simultaneous mutation of the genes OsbZIP01 and OsbZIP18, or by selectively manipulating the basic region of OsbZIP01. Destroying the leucine zipper region of OsbZIP01 in vig1a turns vig1a to be vig1b. Further analysis reveals that OsbZIP01 and OsbZIP18 function cooperatively in diverse crucial biological programs that determine seedling establishment, chilling tolerance, and grain yield through their interactions. These findings provide a strategy toward simultaneously improving seedling vigor, chilling tolerance, and grain yield for rice production.
Collapse
Affiliation(s)
- Dunpin Xiong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ge Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Yang T, Dong J, Xiong X, Zhang L, Wang J, Hu H, Zhou L, Yang W, Ma Y, Fu H, Chen J, Li W, Nie S, Liu Z, Liu B, Wang F, Zhao J, Zhang S. A Novel Function of GW5 on Controlling the Early Growth Vigor and its Haplotype Effect on Shoot Dry Weight and Grain Size in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2024; 17:49. [PMID: 39126552 DOI: 10.1186/s12284-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Strong early growth vigor is an essential target in both direct seeded rice breeding and high-yielding rice breeding for rice varieties with relatively short growth duration in the double-cropping region. Shoot dry weight (SDW) is one of the important traits associated with early growth vigor, and breeders have been working to improve this trait. Finding stable QTLs or functional genes for SDW is crucial for improving the early growth vigor by implementing molecular breeding in rice. Here, a genome-wide association analysis revealed that the QTL for SDW, qSDW-5, was stably detected in the three cultivation methods commonly used in production practice. Through gene-based haplotype analysis of the annotated genes within the putative region of qSDW-5, and validated by gene expression and knockout transgenic experiments, LOC_Os05g09520, which is identical to the reported GW5/GSE5 controlling grain width (GW) and thousand grain weight (TGW) was identified as the causal gene for qSDW-5. Five main haplotypes of LOC_Os05g09520 were identified in the diverse international rice collection used in this study and their effects on SDW, GW and TGW were analyzed. Phenotypic comparisons of the major haplotypes of LOC_Os05g09520 in the three subpopulations (indica, japonica and aus) revealed the same patterns of wider GW and higher TGW along with higher SDW. Furtherly, the haplotype analysis of 138 rice varieties/lines widely used in southern China showed that 97.8% of the cultivars/lines carry Hap2LOC_Os05g09520. These results not only provide a promising gene source for the molecular breeding of rice varieties with strong early growth vigor, but also elucidate the effect of the LOC_Os05g09520 haplotypes on SDW, GW, and TGW in rice. Importantly, this study provides direct genetic evidence that these three traits are significantly correlated, and suggests a breeding strategy for developing high-yielding and slender grain-shaped indica cultivars with strong early growth vigor.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xijuan Xiong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Feng Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
5
|
Dong J, Ma Y, Hu H, Wang J, Yang W, Fu H, Zhang L, Chen J, Zhou L, Li W, Nie S, Liu Z, Zhao J, Liu B, Yang T, Zhang S. The Function of SD1 on Shoot Length and its Pyramiding Effect on Shoot Length and Plant Height in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2024; 17:21. [PMID: 38526756 DOI: 10.1186/s12284-024-00699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Strong seedling vigor is imperative to achieve stable seedling establishment and enhance the competitiveness against weeds in rice direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor in rice, but few genes for SL have been cloned so far. In the previous study, we identified two tightly linked and stably expressed QTLs for SL, qSL-1f and qSL-1d by genome-wide association study, and cloned the causal gene (LOC_Os01g68500) underlying qSL-1f. In the present study, we identify LOC_Os01g66100 (i.e. the semidwarf gene SD1), a well-known gene controlling plant height (PH) at the adult-plant stage, as the causal gene underlying qSL-1d through gene-based haplotype analysis and knockout transgenic verification. By measuring the phenotypes (SL and PH) of various haplotypes of the two genes and their knockout lines, we found SD1 and LOC_ Os01g68500 controlled both SL and PH, and worked in the same direction, which provided the directly genetic evidence for a positive correlation between SL and PH combined with the analysis of SL and PH in the diverse natural population. Moreover, the knockout transgenic experiments suggested that SD1 had a greater effect on PH compared with LOC_ Os01g68500, but no significant difference in the effect on SL. Further investigation of the pyramiding effects of SD1 and LOC_Os01g68500 based on their haplotype combinations suggested that SD1 may play a dominant role in controlling SL and PH when the two genes coexist. In this study, the effect of SD1 on SL at the seedling stage is validated. In total, two causal genes, SD1 and LOC_ Os01g68500, for SL are cloned in our studies, which controlled both SL and PH, and the suitable haplotypes of SD1 and LOC_ Os01g68500 are beneficial to achieve the desired SL and PH in different rice breeding objectives. These results provide a new clue to develop rice varieties for direct seeding and provide new genetic resources for molecular breeding of rice with suitable PH and strong seedling vigor.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China.
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Yang T, Dong J, Zhao J, Zhang L, Zhou L, Yang W, Ma Y, Wang J, Fu H, Chen J, Li W, Hu H, Jiang X, Liu Z, Liu B, Zhang S. Genome-wide association mapping combined with gene-based haplotype analysis identify a novel gene for shoot length in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:251. [PMID: 37985474 PMCID: PMC10661777 DOI: 10.1007/s00122-023-04497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
KEY MESSAGE Genome-wide association mapping revealed a novel QTL for shoot length across multiple environments. Its causal gene, LOC_Os01g68500, was identified firstly through gene-based haplotype analysis, gene expression and knockout transgenic verification. Strong seedling vigor is an important breeding target for rice varieties used in direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor characterized by rapid growth of seedling, which enhance seedling emergence. Therefore, mining genes for SL and conducting molecular breeding help to develop varieties for direct seeding. However, few QTLs for SL have been fine mapped or cloned so far. In this study, a genome-wide association study of SL was performed in a diverse rice collection consisting of 391 accessions in two years, using phenotypes generated by different cultivation methods according to the production practice, and a total of twenty-four QTLs for SL were identified. Among them, the novel QTL qSL-1f on chromosome 1 could be stably detected across all three cultivation methods in the whole population and indica subpopulation. Through gene-based haplotype analysis of the annotated genes within the putative region of qSL-1f, and validated by gene expression and knockout transgenic experiments, LOC_Os01g68500 (i.e., Os01g0913100 in RAP-DB) was identified as the causal gene for SL, which has a single-base variation (C-to-A transversion) in its CDS region, resulting in the significant difference in SL of rice. LOC_Os01g68500 encodes a DUF538 (Domain of unknown function) containing protein, and the function of DUF538 protein gene on rice seedling growth is firstly reported in this study. These results provide a new clue for exploring the molecular mechanism regulating SL, and promising gene source for the molecular breeding in rice.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Science, Yangjiang, 529500, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Xu S, Fei Y, Wang Y, Zhao W, Hou L, Cao Y, Wu M, Wu H. Identification of a Seed Vigor-Related QTL Cluster Associated with Weed Competitive Ability in Direct-Seeded Rice (Oryza Sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:45. [PMID: 37831291 PMCID: PMC10575835 DOI: 10.1186/s12284-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
Direct seeding of rice (Oryza sativa L.) is a low-labor and sustainable cultivation method that is used worldwide. Seed vigor and early vigor are important traits associated with seedling stand density (SSD) and weed competitive ability (WCA), which are key factors in direct-seeded rice (DSR) cultivation systems. Here, we developed a set of chromosome segment substitution lines with Xiushui134 as receptor parent and Yangdao6 as donor parent and used these lines as a mapping population to identify quantitative trait loci (QTLs) for seed vigor, which we evaluated based on germinability-related indicators (germination percentage (GP), germination energy (GE), and germination index (GI)) and seedling vigor-related indicators (root number (RN), root length (RL), and shoot length (SL) at 14 days after imbibition) under controlled conditions in an incubator. Ten QTLs were detected across four chromosomes, of which a cluster of QTLs (qGP11, qGE11, qGI11, and qRL11) co-localized on Chr. 11 with high LOD values (12.03, 8.13, 7.14, and 8.75, respectively). Fine mapping narrowed down the QTL cluster to a 0.7-Mb interval between RM26797 and RM6680. Further analysis showed that the QTL cluster has a significant effect (p < 0.01) on early vigor under hydroponic culture (root length, total dry weight) and direct seeding conditions (tiller number, aboveground dry weight). Thus, our combined analysis revealed that the QTL cluster influenced both seed vigor and early vigor. Identifying favorable alleles at this QTL cluster could facilitate the improvement of SSD and WCA, thereby addressing both major factors in DSR cultivation systems.
Collapse
Affiliation(s)
- Shan Xu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuexin Fei
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yue Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Wenjia Zhao
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Luyan Hou
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yujie Cao
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Min Wu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hongkai Wu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
8
|
Li L, Hu Y, Wang Y, Zhao S, You Y, Liu R, Wang J, Yan M, Zhao F, Huang J, Yu S, Feng Z. Identification of novel candidate loci and genes for seed vigor-related traits in upland cotton ( Gossypium hirsutum L.) via GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1254365. [PMID: 37719213 PMCID: PMC10503134 DOI: 10.3389/fpls.2023.1254365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently, over 80% of China's cotton-planting area is in Xinjiang Province, where a fully mechanized planting model is adopted, accounting for more than 90% of the total fiber production. Therefore, identifying SV-related loci and genes is crucial for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits, including germination potential, germination rate, and germination index, were investigated across three environments in a panel of 355 diverse accessions based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A total of 26 significant SNPs were detected and divided into six quantitative trait locus regions, including 121 predicted candidate genes. By combining gene expression, gene annotation, and haplotype analysis, two novel candidate genes (Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was found to be involved in artificial selection during cotton breeding by population genetic analysis. Thus, understanding the genetic mechanisms underlying seed vigor-related traits in cotton could help increase the efficiency of direct seeding by molecular marker-assisted selection breeding.
Collapse
Affiliation(s)
- Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yu Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yongbo Wang
- Cotton Sciences Research Institute of Hunan, Changde, Hunan, China
| | - Shuqi Zhao
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Yijin You
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Ruijie Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Jiayi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| |
Collapse
|
9
|
Zhang H, Chen G, Xu H, Jing S, Jiang Y, Liu Z, Zhang H, Wang F, Hu X, Zhu Y. Transcriptome Analysis of Rice Embryo and Endosperm during Seed Germination. Int J Mol Sci 2023; 24:ijms24108710. [PMID: 37240056 DOI: 10.3390/ijms24108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is a complex, multistage developmental process that is an important step in plant development. In this study, RNA-Seq was conducted in the embryo and endosperm of unshelled germinating rice seeds. A total of 14,391 differentially expressed genes (DEGs) were identified between the dry seeds and the germinating seeds. Of these DEGs, 7109 were identified in both the embryo and endosperm, 3953 were embryo specific, and 3329 were endosperm specific. The embryo-specific DEGs were enriched in the plant-hormone signal-transduction pathway, while the endosperm-specific DEGs were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis. We categorized these DEGs into early-, intermediate-, and late-stage genes, as well as consistently responsive genes, which can be enriched in various pathways related to seed germination. Transcription-factor (TF) analysis showed that 643 TFs from 48 families were differentially expressed during seed germination. Moreover, 12 unfolded protein response (UPR) pathway genes were induced by seed germination, and the knockout of OsBiP2 resulted in reduced germination rates compared to the wild type. This study enhances our understanding of gene responses in the embryo and endosperm during seed germination and provides insight into the effects of UPR on seed germination in rice.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sasa Jing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ziwen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Zeng Z, Guo C, Yan X, Song J, Wang C, Xu X, Hao Y. QTL mapping and KASP marker development for seed vigor related traits in common wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:994973. [PMID: 36247615 PMCID: PMC9563228 DOI: 10.3389/fpls.2022.994973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Seed vigor is an important parameter of seed quality, and identification of seed vigor related genes can provide an important basis for highly efficient molecular breeding in wheat. In the present study, a doubled haploid (DH) population with 174 lines derived from a cross between Yangmai16 and Zhongmai 895 was used to evaluate 10 seed vigor related traits in Luoyang during the 2018-2019 cropping season and in Mengjin and Luoning Counties during 2019-2020 cropping season for three environments. Quantitative trait locus (QTL) mapping of 10 seed vigor related traits in the DH population resulted in the discovery/identification of 28 QTLs on chromosomes 2B, 3D, 4B, 4D, 5A, 5B, 6A, 6B, 6D, 7A and 7D, explaining 3.6-23.7% of the phenotypic variances. Among them, one QTL cluster for shoot length, root length and vigor index was mapped between AX-89421921 and Rht-D1_SNP on chromosome 4D in the physical intervals of 18.78-19.29 Mb (0.51 Mb), explaining 9.2-20.5% of the phenotypic variances. Another QTL for these traits was identified at the physical position 185.74 Mb on chromosome 5B, which was flanked by AX-111465230 and AX-109519938 and accounted for 8.0-13.3% of the phenotypic variances. Two QTLs for shoot length, shoot fresh weight and shoot dry weight were identified in the marker intervals of AX-109384026-AX-111120402 and AX-111651800-AX-94443918 on chromosomes 6A and 6B, explaining 8.2-11.7% and 3.6-10.3% of the phenotypic variance, respectively; both alleles for increasing phenotypic values were derived from Yangmai 16. We also developed the KASP markers for the QTL cluster QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D, and validated in an international panel of 135 wheat accessions. The germplasm, genes and KASP markers were developed for breeders to improve wheat varieties with seed vigor related traits.
Collapse
Affiliation(s)
- Zhankui Zeng
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Cheng Guo
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Xuefang Yan
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Junqiao Song
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Chunping Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Xiaoting Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
11
|
Ma Y, Wang J, Yang T, Dong J, Yang W, Chen L, Zhou L, Chen J, Liu B, Zhang S, Edwards D, Zhao J. Genome-wide association mapping and gene expression analysis identify OsCPS1 as a new candidate gene controlling early seedling length in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:976669. [PMID: 36119573 PMCID: PMC9478204 DOI: 10.3389/fpls.2022.976669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 06/14/2023]
Abstract
High seedling vigor can improve the ability to compete against weeds and flooding at the seedling stage and is essential for the direct seeding of rice. Early shoot length is an important performance index in seedling vigor evaluation. However, information on the identity of rice germplasm with high seedling vigor, and the genetic basis of seedling vigor are not well understood. In this study, we have conducted a genome-wide association study using 302 international diverse rice accessions from the Rice Diversity Panel 2. Six quantitative trait loci (QTLs) were found to associate with shoot length (SL). The locus qSL2 was further analyzed for candidate gene characterization. We identified OsCPS1, which encodes CDP synthase and functions in GA (Gibberellins) biosynthesis in rice, exhibits differential expression between long and short SL accessions. Using the Nipponbare genome sequence as the reference, we identified a 36 bp deletion in the 5' UTR of OsCPS1 in long SL accessions, which is absent in short SL accessions. GA content analysis showed that the levels of bioactive GA1 and GA4 are considerably higher in long SL accessions than in short SL accessions. Genome-wide gene expression analysis indicated the expression of some photosynthesis genes is higher in long SL accessions than in short SL accessions. In contrast, genes involved in ABA (Abscisic Acid)-activated signal pathway showed lower expression in long SL accessions. Population analysis across wild rice, indica and japonica, suggested that OsCPS1 may be under selection in japonica during domestication. The results suggest that OsCPS1 is a candidate gene underlying qSL2. These data provide a promising source for candidate genetic variation associated with seedling vigor, with practical applications in rice breeding.
Collapse
Affiliation(s)
- Yamei Ma
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Wang
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingfang Dong
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wu Yang
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Luo Chen
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Liu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - David Edwards
- School of Biological Sciences and Centre for Applied Bioinformatics, The University of Western Australia, Perth, WA, Australia
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Veisi S, Sabouri A, Abedi A. Meta-analysis of QTLs and candidate genes associated with seed germination in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1587-1605. [PMID: 36389095 PMCID: PMC9530108 DOI: 10.1007/s12298-022-01232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/12/2023]
Abstract
Seed germination is one of the critical stages of plant life, and many quantitative trait loci (QTLs) control this complex trait. Meta-analysis of QTLs is a powerful computational technique for estimating the most stable QTLs regardless of the population's genetic background. Besides, this analysis effectively narrows down the confidence interval (CI) to identify candidate genes (CGs) and marker development. In the current study, a comprehensive genome-wide meta-analysis was performed on QTLs associated with germination in rice. This analysis was conducted based on the data reported over the last two decades. In this case, various analyses were performed, including seed germination rate, plumule length, radicle length, germination percentage, coleoptile length, coleorhiza length, radicle fresh weight, germination potential, and germination index. A total of 67 QTLs were projected onto a reference map for these traits and then integrated into 32 meta-QTLs (MQTLs) to provide a genetic framework for seed germination. The average CI of MQTLs was considerably reduced from 15.125 to 8.73 cM compared to the initial QTLs. This situation identified 728 well-known functionally characterized genes and novel putative CGs for investigated traits. The fold change calculation demonstrated that 155 CGs had significant changes in expression analysis. In this case, 112 and 43 CGs were up-regulated and down-regulated during germination, respectively. This study provides an overview and compares genetic loci controlling traits related to seed germination in rice. The findings can bridge the gap between QTLs and CGs for seed germination. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01232-1.
Collapse
Affiliation(s)
- Sheida Veisi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
13
|
Wong ACS, Massel K, Lam Y, Hintzsche J, Chauhan BS. Biotechnological Road Map for Innovative Weed Management. FRONTIERS IN PLANT SCIENCE 2022; 13:887723. [PMID: 35548307 PMCID: PMC9082642 DOI: 10.3389/fpls.2022.887723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 05/07/2023]
Abstract
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute to weed seed bank persistence further exacerbate the challenges in weed management. Despite ongoing efforts in identifying and improving current weed management processes, the pressing need for novel control techniques in agricultural weed management should not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the recent advances in "omics" and cheaper sequencing technologies, has brought into focus the potential of managing weeds in farmlands through direct genetic control approaches, but could be achieved stably or transiently. These approaches encompass a range of technologies that could potentially manipulate expression of key genes in weeds to reduce its fitness and competitiveness, or, by altering the crop to improve its competitiveness or herbicide tolerance. The push for reducing or circumventing the use of chemicals in farmlands has provided an added incentive to develop practical and feasible molecular approaches for weed management, although there are significant technical, practical, and regulatory challenges for utilizing these prospective molecular technologies in weed management.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Albert Chern Sun Wong,
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Hintzsche
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bhagirath Singh Chauhan
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
14
|
Kaur P, Sachan S, Sharma A. Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2165-2179. [PMID: 34744359 PMCID: PMC8526637 DOI: 10.1007/s12298-021-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Weed competitive ability of a crop is one of the most widely explored aspects in the current scenario of aftermaths of synthetic herbicides such as herbicide resistant weeds emergence, residue accumulation in trophic levels; increased demands of organic produce, global climatic shifts, and other environmental issues. Further weed infestations are known to cause much more economic losses relative to crop attacks by pests. To understand the basic characteristics and underlying processes governing the competitive ability of a crop is therefore prudent, particularly in staples such as wheat. We discuss here an overview of the existing attributes of wheat-weed environment, the significance of crop competitiveness and various associated above-ground and below-ground traits (pertaining to early seed vigor and early seedling germination) discerned through biological, classical genetics and high throughput omics toolbox to provide numerous resources in terms of genome and transcriptome sequences, potential QTLs, genetic variation, molecular markers, association mapping studies, and others. Competitiveness is a cumulative response manifested as morphological, physiological, biochemical or allelochemical response ultimately driven through genetic architecture of a crop and its interaction with environment. Development of wheat competitive cultivar thus requires interdisciplinary approaches and germplasm screening to identify potential donors for competitiveness is an attractive and feasible alternative. For which utilization of landraces and other wild species, already proven to house sufficient genetic heterogeneity, thus poses a competitive advantage. Further, the availability of novel breeding techniques such as rapid generation advance could speed up the development of competitive wheat ideotype.
Collapse
Affiliation(s)
- Parampreet Kaur
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shephali Sachan
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
15
|
Zhao J, He Y, Huang S, Wang Z. Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:659307. [PMID: 34335643 PMCID: PMC8316977 DOI: 10.3389/fpls.2021.659307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Seed vigor is a complex trait, including the seed germination, seedling emergence, and growth, as well as seed storability and stress tolerance, which is important for direct seeding in rice. Seed vigor is established during seed development, and its level is decreased during seed storage. Seed vigor is influenced by genetic and environmental factors during seed development, storage, and germination stages. A lot of factors, such as nutrient reserves, seed dying, seed dormancy, seed deterioration, stress conditions, and seed treatments, will influence seed vigor during seed development to germination stages. This review highlights the current advances on the identification of quantitative trait loci (QTLs) and regulatory genes involved in seed vigor at seed development, storage, and germination stages in rice. These identified QTLs and regulatory genes will contribute to the improvement of seed vigor by breeding, biotechnological, and treatment approaches.
Collapse
|