1
|
Pintus E, Kotrba R, Ros-Santaella JL. Horn size is linked to Sertoli cell efficiency and sperm size homogeneity during sexual development in common eland ( Taurotragus oryx). Front Cell Dev Biol 2024; 12:1421634. [PMID: 39228403 PMCID: PMC11368866 DOI: 10.3389/fcell.2024.1421634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background: In polygynous species, the development of secondary sexual characters is usually decisive for male reproductive success. However, our understanding about the links between the growth of these traits and reproductive efficiency is still elusive. Most research efforts in this topic have been also focused on adult males, although the development of some secondary sexual characters, like bovid horns, typically starts after birth, continues during the puberty and in some species, such as the common eland, slows or even stops during adulthood. In this study, we investigated the relationships between horn size and testicular function during sexual development in common elands using a comprehensive approach that considers both spermatogenic and sperm parameters. Methods: Twenty-two non-sexually mature common elands were used for the present study. Horn size, body mass, testes mass, and gonadosomatic index were assessed. Spermatogenic activity was determined by cytological and histological analyses. Sperm concentration, morphology, morphometry, and intramale variation in sperm size were evaluated on epididymal sperm samples. Cluster analysis was performed to explore the influence of age on relationships between horn size and reproductive function. Results: We found that bigger horns are associated with increased Sertoli cell efficiency and reduced intramale variation in sperm size. Both parameters were not related to one another while they have shown to be associated with enhanced sperm quality in ungulates. Moreover, horn size was positively linked to the testis mass, sperm concentration, and testicular investment in the seminiferous epithelium. Spiral length and basal circumference were the horn traits most strongly correlated with spermatogenic and sperm parameters as well as those responsible for the sexual dimorphism in this species. Cluster analysis rendered two groups: the first one including males ≤30 months old, while the second one those >30 months old. Horn development and reproductive function were still correlated within age groups, with the strongest relationship found between horn size and sperm size homogeneity in males >30 months old. Conclusion: Taken together, our results indicate that horn size can be regarded as a good index of male reproductive potential during sexual development and provide insights into the role of secondary sexual characters in sexual selection dynamics.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Radim Kotrba
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Jennings DJ, Gammell MP. Fluctuating Asymmetry of Fallow Deer Antlers Is Associated with Weapon Damage but Not Tactical Behaviour during Fights. Symmetry (Basel) 2023. [DOI: 10.3390/sym15040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The horns and antlers borne by the males of many species of ungulate are considered to be both badges of quality, and armaments for use during intraspecific combat. Underpinning arguments concerning their dual utility is the idea that these structures should be costly to produce in order that the signal value of the structure is maintained. In agreement with such theorising is the belief that fluctuating asymmetry (FA), small deviations from symmetry around a mean of zero, measures individual quality as it represents the ability of the individual to withstand stress. We investigated whether the antlers of fallow deer indicated something of the quality of the bearer by assessing whether the degree of antler FA was associated with breakage (i.e., badge of quality) or with tactical investment in fighting (i.e., armament). We show the anticipated relationship between FA and antler damage, however, there was no relationship between FA and contest tactics. The present study, therefore, shows partial support for the idea that the magnitude of fluctuating asymmetry expressed by weaponry is related to individual quality.
Collapse
|
3
|
Arce AN, Cantwell-Jones A, Tansley M, Barnes I, Brace S, Mullin VE, Notton D, Ollerton J, Eatough E, Rhodes MW, Bian X, Hogan J, Hunter T, Jackson S, Whiffin A, Blagoderov V, Broad G, Judd S, Kokkini P, Livermore L, Dixit MK, Pearse WD, Gill RJ. Signatures of increasing environmental stress in bumblebee wings over the past century: Insights from museum specimens. J Anim Ecol 2023; 92:297-309. [PMID: 35978494 PMCID: PMC10086799 DOI: 10.1111/1365-2656.13788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.
Collapse
Affiliation(s)
- Andres N Arce
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,School of Engineering, Arts, Science & Technology, University of Suffolk, Ipswich, UK
| | - Aoife Cantwell-Jones
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Michael Tansley
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Victoria E Mullin
- Department of Earth Sciences, Natural History Museum, London, UK.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Notton
- Department of Earth Sciences, Natural History Museum, London, UK.,National Museum Scotland, Edinburgh, UK
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Emma Eatough
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Marcus W Rhodes
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Xueni Bian
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK.,Department of Earth Sciences, Natural History Museum, London, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | | | - Simon Jackson
- Tullie House Museum and Art Gallery Trust, Cumbria, UK.,Ipswich Museum (Colchester and Ipswich Museums), Ipswich, UK
| | | | | | - Gavin Broad
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Phaedra Kokkini
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Mahika K Dixit
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - William D Pearse
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Richard J Gill
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| |
Collapse
|
5
|
A New Integrated Tool to Calculate and Map Bilateral Asymmetry on Three-Dimensional Digital Models. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The observation and the quantification of asymmetry in biological structures are deeply investigated in geometric morphometrics. Patterns of asymmetry were explored in both living and fossil species. In living organisms, levels of directional and fluctuating asymmetry are informative about developmental processes and health status of the individuals. Paleontologists are primarily interested in asymmetric features introduced by the taphonomic process, as they may significantly alter the original shape of the biological remains, hampering the interpretation of morphological features which may have profound evolutionary significance. Here, we provide a new R tool that produces the numerical quantification of fluctuating and directional asymmetry and charts asymmetry directly on the specimens under study, allowing the visual inspection of the asymmetry pattern. We tested this show.asymmetry algorithm, written in the R language, on fossil and living cranial remains of the genus Homo. show.asymmetry proved successful in discriminating levels of asymmetry among sexes in Homo sapiens, to tell apart fossil from living Homo skulls, to map effectively taphonomic distortion directly on the fossil skulls, and to provide evidence that digital restoration obliterates natural asymmetry to unnaturally low levels.
Collapse
|
6
|
Breaking Symmetry: Fluctuating Asymmetry and Geometric Morphometrics as Tools for Evaluating Developmental Instability under Diverse Agroecosystems. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fluctuating asymmetry (FA), in contrast with other asymmetries, is the bilateral asymmetry that represents small, random developmental differences between right and left sides. After nearly a century of using traditional morphometrics in the estimation of FA, geometric morphometrics (GM) now provides new insights into the use of FA as a tool, especially for assessing environmental and developmental stress. Thus, it will be possible to assess adaptation to various environmental stressors as particular triggers for unavoidable selection pressures. In this review, we describe measures of FA that use geometric morphometrics, and we include a flow chart of the methodology. We also describe how this combination (GM + FA) has been tested in several agroecosystems. Nutritional stress, temperature, chemical pollution, and population density are known stressors experienced by populations in agroecosystems.
Collapse
|