1
|
Jahangiri S, Abdan Z, Houshmand M, Souroush A, Aznab M. Association between single nucleotide polymorphisms of DNA repair genes (BRCA1, BRCA2, and PALB2) and breast cancer incidence in a subset of Iranian population. Hered Cancer Clin Pract 2025; 23:12. [PMID: 40158114 PMCID: PMC11954309 DOI: 10.1186/s13053-025-00311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among Iranian females, accounting for 24.4% of all malignancies. Germ line mutations in DNA repair system-related genes are associated with an increased risk of BC. This study aims to evaluate the frequencies of single nucleotide polymorphisms (SNPs) in the BRCA1, BRCA2, and PALB2 genes in patients with BC from a subset of the Iranian population in the western part of Iran. METHODS Blood samples were collected from 335 patients with BC and 354 healthy matched volunteers. Genomic DNA was extracted using the salting-out method and, after quality control, was genotyped using the multiplex TaqMan allelic discrimination assay for three SNPs: rs80359550 (6174 delT) in the BRCA2 gene, rs180177102 in the PALB2 gene, and rs386833395 (185delAG) in the BRCA1 gene. Statistical analysis was performed to examine allele frequency, odds ratio, and relative risk (genetic association) in a retrospective case-control study. RESULTS The data showed no association between rs386833395 and BC risk in the studied population (odds ratio = 1), whereas rs80359550 and rs180177102 polymorphisms were strongly associated with BC risk in patients (odds ratio = 0.01 for both, with p-values of 0.011 and 0.021, respectively). CONCLUSIONS Our findings suggest no significant association between the rs386833395 polymorphism and BC risk in the Iranian Kurdish population, while rs80359550 and rs180177102 polymorphisms were strongly associated with BC. However, the study has several limitations, including its retrospective design, a relatively small sample size, and the potential lack of generalizability to other ethnic groups within Iran. Future studies involving larger cohorts and more diverse populations are needed to confirm these results.
Collapse
Grants
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University of Medical Sciences, Kermanshah, Iran
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetics and Biotechnology, Tehran, Iran
| | - Ali Souroush
- Department of Medical Physics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozaffar Aznab
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Oncology- Hematology, Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Iwai Y, Toumbou K, Zuze T, Morgan JS, Simwinga L, Wright ST, Fedoriw Y, Oladeru OT, Balogun OD, Roberson ML, Olopade OI, Tomoka T, Elmore SN. Breast Cancer Germline Genetic Counseling and Testing for Populations of African Heritage Globally: A Scoping Review on Research, Practice, and Bioethical Considerations. JCO Glob Oncol 2023; 9:e2300154. [PMID: 37944088 PMCID: PMC10645409 DOI: 10.1200/go.23.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 09/05/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE Despite the disproportionately high risk of breast cancer among women of African heritage, little is known about the facilitators and barriers to implementing germline genetic testing and counseling (GT/C). METHODS This scoping review followed guidelines recommended by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews. Published manuscripts from database inception through 2021 were sourced from PubMed, Cumulative Index to Nursing and Allied Health Literature via EBSCO, Embase, Cochrane Library, and Scopus. Search terms were used to retrieve articles addressing (1) African heritage, (2) breast cancer, and (3) GT or GC. The screening involved abstract and title review and full-text review. Data were extracted for all articles meeting the inclusion criteria. RESULTS A total of 154 studies were included. Most studies that took place were conducted in the United States (71.4%), and most first authors (76.9%) were from the United States. GT was conducted in 73 (49.7%) studies. BRCA1/BRCA2 were the most commonly studied genes for germline mutations. GC was conducted in 49 studies (33.3%), and perspectives on GC were evaluated in 43 (29.3%). The use of racial/ethnic categories varied broadly, although African American was most common (40.1%). Racism was mentioned in three studies (2.0%). CONCLUSION There is a growing body of literature on GT/C for breast cancer in women of African heritage. Future studies on GT/C of African populations should consider increased clarity around racial/ethnic categorizations, continued community engagement, and intentional processes for informed consent.
Collapse
Affiliation(s)
- Yoshiko Iwai
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | - Jenny S. Morgan
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
- Department of Clinical Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Global Health, Indiana University School of Medicine, Indianapolis, IN
| | | | - Sarah T. Wright
- UNC Health Sciences Library, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Oluwadamilola T. Oladeru
- Department of Radiation Oncology, University of Florida, Gainesville, FL
- Department of Radiation Oncology, Mayo Clinic in Florida, Jacksonville, FL
| | | | - Mya L. Roberson
- Department of Health Policy, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
| | | | | | - Shekinah N.C. Elmore
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
3
|
Butz H, Nagy P, Papp J, Bozsik A, Grolmusz VK, Pócza T, Oláh E, Patócs A. PALB2 Variants Extend the Mutational Profile of Hungarian Patients with Breast and Ovarian Cancer. Cancers (Basel) 2023; 15:4350. [PMID: 37686625 PMCID: PMC10487218 DOI: 10.3390/cancers15174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The pathogenic/likely pathogenic (P/LP) variant detection rate and profile of PALB2, the third most important breast cancer gene, may vary between different populations. METHODS PALB2 was analyzed in peripheral blood samples of three independent cohorts: prospectively between September 2021 and March 2023 (i) in 1280 consecutive patients with breast and/or ovarian cancer (HBOC), (ii) in 568 patients with other cancers (controls), and retrospectively, (iii) in 191 young breast cancer (<33 years, yBC) patients. These data were compared with data of 134,187 non-cancer individuals retrieved from the Genome Aggregation Database. RESULTS Altogether, 235 cases (235/1280; 18.3%) carried at least one P/LP variant in one of the HBOC susceptibility genes. P/LP PALB2 variants were identified in 18 patients (1.4%; 18/1280) in the HBOC and 3 cases (1.5%; 3/191) in the yBC group. In the control group, only one patient had a disease-causing PALB2 variant (0.17%; 1/568) as a secondary finding not related to the disease, which was similar (0.15%; 205/134,187) in the non-cancer control group. The NM_024675.4:c.509_510delGA variant was the most common among our patients (33%; 6/18). We did not find a significant difference in the incidence of PALB2 disease-causing variants according to age; however, the median age of tumor onset was lower in PALB2 P/LP carriers versus wild-type patients (44 vs. 48 years). In our cohort, the odds ratio for breast cancer risk in women with PALB2 P/LP variants was between 8.1 and 9.3 compared to non-HBOC cancer patients and the non-cancer population, respectively. CONCLUSIONS PALB2 P/LP variants are not uncommon among breast and/or ovarian cancer patients. Their incidence was the same in the two breast cancer cohorts studied but may occur rarely in patients with non-breast/ovarian cancer. The c.509_510delGA variant is particularly common in the studied Hungarian patient population.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Department of Oncology Biobank, National Institute of Oncology, 1122 Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1092 Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - Edit Oláh
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
4
|
Anyigba CA, Awandare GA, Paemka L. Breast cancer in sub-Saharan Africa: The current state and uncertain future. Exp Biol Med (Maywood) 2021; 246:1377-1387. [PMID: 33926257 DOI: 10.1177/15353702211006047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the commonest cause of global cancer-related deaths in women and a public health burden in sub-Saharan Africa (SSA). Although the disease incidence in SSA seems lower, mortality rates are disproportionately high in comparison to high-income countries. The global disease burden is growing, with SSA reporting the majority of cases; however, the dearth of information results in insufficient data which is barely representative of the actual disease burden in this population. Future incidence predictions assign the subregion with a majority of the cases and associated deaths. Breast cancer presents with racial and ethnic variations, and available evidence suggests geographical diversity and persistent risk factors that have barely been explored in SSA. Breast cancer is a complex genetic disease, but the genetic risk factors in the extant African population, which is the most genetically diverse population, is scant and of low quality. This review focuses on the burden, prevalence, detection, treatment, survival, biology, as well as risk factors, and reinforces the need for breast cancer-associated risk factor investigation and population-specific studies in SSA.
Collapse
Affiliation(s)
- Claudia A Anyigba
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, 58835University of Ghana, Accra, GH 00233, Ghana
| | - Gordon A Awandare
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, 58835University of Ghana, Accra, GH 00233, Ghana
| | - Lily Paemka
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, 58835University of Ghana, Accra, GH 00233, Ghana
| |
Collapse
|
5
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Bogari NM, Al-Allaf FA, Aljohani A, Taher MM, Qutub NA, Alhelfawi S, Alobaidi A, Alqudah DM, Banni H, Dairi G, Amin AA. The Co-existence of ADHD With Autism in Saudi Children: An Analysis Using Next-Generation DNA Sequencing. Front Genet 2020; 11:548559. [PMID: 33384710 PMCID: PMC7770135 DOI: 10.3389/fgene.2020.548559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders. Several studies have confirmed the co-existence of other neuropsychiatric disorders with ADHD. Out of 106 individuals suspected to have ADHD, eight Saudi Arabian pediatric patients were diagnosed with ADHD using a dual assessment procedure based on highly significant scores from the international criteria for diagnosis; (full form DMS) DSM-5. Then, these patients were examined for the co-existence of autism and ADHD using different international diagnostic protocols. Four patients with combined ADHD and autism and four ADHD patients without autism were examined for the presence of genetic variants. Six variants (chr1:98165091, chr6:32029183, chr6:32035603, chr6:32064098, chr8:2909992, chr16:84213434) were identified in 75% of the patients with ADHD and autism, indicating that these genes may have a possible role in causing autism. Five variants (The chr2:116525960, chr15:68624396, chr15:91452595, chr15:92647645, and chr16:82673047) may increase to the severity of ADHD. This study recommends screening these eleven variants in ADHD cases and their relevant controls to confirm the prevalence in the Saudi population. It is recommended that future studies examine the 11 variants in detail.
Collapse
Affiliation(s)
- Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashwag Aljohani
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohiuddin M. Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nermeen A. Qutub
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suhair Alhelfawi
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
- Institute of Education, University of Reading, Reading, United Kingdom
| | - Amal Alobaidi
- Sinad City for Special Education, Jeddah, Saudi Arabia
| | - Derar M. Alqudah
- Special Need Department, School of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Banni
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research Center, Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amr A. Amin
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Okoturo E, Osasuyi A, Opaleye T. Genetic Polymorphism of Head and Neck Cancers in African Populations: A Systematic Review. OTO Open 2020; 4:2473974X20942202. [PMID: 32743234 PMCID: PMC7375724 DOI: 10.1177/2473974x20942202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Head and neck cancers are mostly composed of head and neck squamous cell carcinoma (HNSCC). The incidence and mortality of HNSCC are higher in countries with emerging health care systems, particularly Africa. Given that they are more genetically diverse, characterization of polymorphism in African HNSCC may result in the identification of distinct molecular targets as compared with the known HNSCC candidate genes. This study objective is to review the current evidence of genetic data on HNSCC among African populations as well as to demonstrate any distinctions as compared with known candidate genes and to appraise any research gaps. Data Sources Publications that interrogated susceptible gene polymorphisms to African-based populations with cancer were reviewed for this study. Review Methods Our search methodology was modeled after the Cochrane systematic review protocol, which included MeSH terms and keywords related to cancer, polymorphisms, and African countries. Results Seven articles studying 2 HNSCC cancer types in 3 of 54 African countries met the inclusion criteria. Thirteen polymorphisms from 10 genes were screened (NOS3, CYP1A1, CYP2D6, NAT1, NAT2, NQO1, IL-10, IL-12, IL-8, COX2). All articles were screened for polymorphisms based on a polymerase chain reaction–based technique. All polymorphs suggested association to HNSCC, with 10 of 13 polymorphs demonstrating a statistically significant association. Conclusion Studies on known HNSCC candidate genes should be undertaken in Africa, particularly among sub-Saharan Africans. Importantly, these studies should be large scale with multiple HNC sites and with use of high-throughput methods.
Collapse
Affiliation(s)
- Eyituoyo Okoturo
- Head and Neck Cancer Division, Oral and Maxillofacial Surgery Department, Lagos State University Teaching Hospital, Lagos, Nigeria.,Molecular Oncology Program, Medical Research Centre, Lagos State University College of Medicine, Lagos, Nigeria
| | - Anslem Osasuyi
- Oral and Maxillofacial Surgery Department, Nigerian Airforce Hospital, Ikeja, Nigeria
| | - Taofiq Opaleye
- Oral and Maxillofacial Surgery Department, Lagos State University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
8
|
Genetic variants association with cancers in African-based populations: A systematic review. Cancer Epidemiol 2020; 67:101739. [PMID: 32554299 DOI: 10.1016/j.canep.2020.101739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is the single leading cause of human deaths worldwide. The highest incidence and mortality are recorded from Africa. The last two decades have witnessed extensive research which has led to emerging prognosis and new gene therapy technologies. Cancer therapy in Africa is derived with little input from African population data. While a number of cancer studies on African populations have suggested varied susceptible variant, no comprehensive review of these studies has been undertaken to assess their coverage across Africa. METHODS This study aimed to undertake a review of all molecular genetic studies that interrogated the genetic variants of cancers in African-based populations. Our search methodology was modelled after the Cochrane systematic review protocol, which included MeSH terms and related keywords. RESULTS Ninety-seven articles studying 13 cancer types, were reviewed. 91 articles screened for polymorphisms using PCR-based techniques while three used SNP array, two used whole exome sequencing and one used pyrosequencing. North African (NA) countries undertook 51/97 (53 %) studies on 12/13 (92 %) cancer types while the Sub Saharan Africa (SSA) countries undertook 46/97 (47 %) studies on 7/13 (54 %) cancer types. Twelve out of these thirteen cancer type studies suggested susceptibility to their target polymorphism (p > 0.05). No study replicated or validated variants detected. CONCLUSION Research on genetic determinants in African-based population cancer offers translational benefits. We recommended large scale, multi-national genome association studies using high throughput techniques. SSA needs to receive more attention due to the shortage of this type of study and data in the region.
Collapse
|
9
|
Wu Y, Dong X, Wang Y, Wang Q, Gu H, Huang W. Association between rs120963, rs152451, rs249935, rs447529, rs8053188, and rs16940342 Polymorphisms in the PALB2 Gene and Breast Cancer Susceptibility: A Meta-Analysis. Oncol Res Treat 2018; 41:780-786. [PMID: 30458447 DOI: 10.1159/000492827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND The aim of this study was to explore the association between single nucleotide polymorphisms (SNPs) in the rs120963, rs152451, rs249935, rs447529, rs8053188, and rs16940342 loci in the PALB2 gene and breast cancer risk. METHODS Studies investigating the association between SNPs in the PALB2 gene and breast cancer susceptibility were retrieved from the PubMed, Embase, Web of Science, CNKI (Chinese National Knowledge Infrastructure), WanFang, and CBM (China Biology Medicine) databases. Eligible studies were screened according to inclusion/exclusion criteria and principles of quality evaluation. Meta-analysis was performed using Stata 14.0 software. Odds ratios with their corresponding 95% confidence intervals were pooled to assess the association between SNPs in the PALB2 gene loci rs249935, rs447529, rs8053188, rs16940342, rs152451, and rs120963 and breast cancer susceptibility. RESULTS A total of 9 case-control studies were eligible for this meta-analysis. SNPs in the PALB2 gene loci rs120963, rs249935, and rs447529 were significantly associated with an increased or decreased risk of breast cancer. No significant association was detected for rs152451, rs8053188, and rs16940342 under 4 genetic models. CONCLUSION The results of this study suggest that SNPs in the PALB2 loci rs120963/rs249935/rs447529, but not in the other 3 loci (rs152451/rs8053188/rs16940342), may contribute to breast cancer susceptibility.
Collapse
|
10
|
Lupicki K, Elifio-Esposito S, Fonseca AS, Weber SH, Sugita B, Langa BC, Pereira SRF, Govender D, Panieri E, Hiss DC, Abdul-Rasool S, Cavalli LR. Patterns of copy number alterations in primary breast tumors of South African patients and their impact on functional cellular pathways. Int J Oncol 2018; 53:2745-2757. [PMID: 30320392 DOI: 10.3892/ijo.2018.4589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common and the leading cause of female mortality among South African (SA) women. Several non‑biological and biological risk factors may be attributed to their observed high mortality rate; however, the molecular profiles associated with their breast tumors are poorly characterized. The present study examined the patterns of genome-wide copy number alterations (CNAs) and their potential impact on functional cellular pathways targeted by cancer driver genes in patients with breast cancer from the Western Cape region of SA. Array-comparative genomic hybridization analysis, performed in 28 cases of invasive breast cancer, revealed a mean number of 8.68±6.18 CNAs per case, affecting primarily the Xp22.3 and 6p21-p25 cytobands (57.14% of the cases), followed by 19p13.3-p13.11 (35.7%), 2p25.3-p24.3, 4p16.3-p15.3, 8q11.1-q24.3 and 16 p13.3-p11.2 (32.14%). Functional enrichment analysis of genes and microRNA targets mapped in these affected cytobands revealed critical cancer-associated pathways, including fatty acid biosynthesis and metabolism, extracellular matrix-receptor interaction, hippo and tumor protein p53 signaling pathways, which are regulated by known cancer genes, including CCND1, CDKN1A, MAPK1, MDM2, TP53 and SMAD2. An inverse correlation was observed among the number of CNAs and tumor size and grade; CNAs on the 4p and 6p cytobands were also inversely correlated with tumor grade. No association was observed in the number of CNAs and/or the affected cytobands and the different ethnic groups of the SA patients, indicating that their tumor genome is affected by CNAs, irrespectively of their genetic descent. Additional genomic tumor profiling in SA and other Sub-Saharan African patients with breast cancer is required to determine the associations of the CNAs observed with prognosis and clinical outcome.
Collapse
Affiliation(s)
- Kamil Lupicki
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA
| | - Selene Elifio-Esposito
- Department of Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil
| | - Aline S Fonseca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA
| | - Saulo H Weber
- Department of Biotechnology, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil
| | - Bruna Sugita
- Department of Genetics, Federal University of Parana, Curitiba, Paraná 80060-000, Brazil
| | - Bridget C Langa
- Department of Medical Biosciences, University of the Western Cape, Bellville, Western Cape 7535, South Africa
| | - Silma R F Pereira
- Department of Biology, Federal University of Maranhão, São Luis, Maranhão 65080-805, Brazil
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, National Health Laboratory Service, Groote Schuur Hospital, Cape Town 7700, South Africa
| | - Eugene Panieri
- Department of Surgical Oncology, Groote Schuur Hospital, Cape Town 7700, South Africa
| | - Donavon C Hiss
- Department of Medical Biosciences, University of the Western Cape, Bellville, Western Cape 7535, South Africa
| | - Sahar Abdul-Rasool
- Department of Medical Biosciences, University of the Western Cape, Bellville, Western Cape 7535, South Africa
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA
| |
Collapse
|
11
|
Genetics of breast cancer in African populations: a literature review. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS 2018; 3:e8. [PMID: 30263132 PMCID: PMC6152487 DOI: 10.1017/gheg.2018.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/25/2022]
Abstract
Breast cancer (BC) is one of the most complex, diverse and leading cause of death in women worldwide. The present investigation aims to explore genes panel associated with BC in different African regions, and compare them to those studied worldwide. We extracted relevant information from 43 studies performed in Africa using the following criteria: case-control study, association between genetic variations and BC risk. Data were provided on mutations and polymorphisms associated with BC without fixing a specific date. Case-only studies and clinical trials were excluded. Our study revealed that the majority of African BC genetic studies remain restricted to the investigation of BRCA1 and BRCA2 genes and differences in their mutations spectrum. Therefore, it is necessary to encourage African researchers to characterize more genes involved in BC using methods generating global information such as next-generation sequencing in order to guide specific and more effective therapeutic strategies for the African community.
Collapse
|
12
|
Bermisheva MA, Bogdanova NV, Gilyazova IR, Zinnatullina GF, Bisultanova ZI, Khusnutdinova EK. Ethnic Features of Genetic Susceptibility to Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gómez-Flores-Ramos L, Álvarez-Gómez RM, Villarreal-Garza C, Wegman-Ostrosky T, Mohar A. Breast cancer genetics in young women: What do we know? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:33-45. [PMID: 29173497 DOI: 10.1016/j.mrrev.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/21/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) in young women, generally defined in oncology as women who are 40 years of age or younger, represents 2 out of 10 BC cases in developing countries. Several research studies, including genetic cancer panel tests, genome-wide association studies, expression analyses and polymorphisms reports, have found that young women with BC exhibit a higher genetic susceptibility and specific genomic signature compared to postmenopausal women with BC. Thus, international guidelines recommend genetic counseling for this age population. This review presents the current state of the art of genetics and genomics with regards to young women with BC.
Collapse
Affiliation(s)
- Liliana Gómez-Flores-Ramos
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva, Coyoacán, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico; Unidad de Investigación en Epidemiología, Subdivisión de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando # 22, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Subdivisión de Investigación Básica, Instituto Nacional de Cancerlogía, Av. San Fernando # 22, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico City, Mexico
| | - Cynthia Villarreal-Garza
- Clínica de Cáncer Hereditario, Subdivisión de Investigación Básica, Instituto Nacional de Cancerlogía, Av. San Fernando # 22, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico City, Mexico; Centro de Cáncer de Mama, Tecnológico de Monterrey, Centro Médico Zambrano Hellion, 6° Piso Av. Batallón de San Patricio #112 Col. Real San Agustín, San Pedro Garza García C.P. 66278, Nuevo León, Mexico
| | - Talia Wegman-Ostrosky
- Clínica de Cáncer Hereditario, Subdivisión de Investigación Básica, Instituto Nacional de Cancerlogía, Av. San Fernando # 22, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico City, Mexico
| | - Alejandro Mohar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva, Coyoacán, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico; Unidad de Investigación en Epidemiología, Subdivisión de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando # 22, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico City, Mexico.
| |
Collapse
|
14
|
Association of PALB2 sequence variants with the risk of early-onset breast cancer in patients from Turkey. Mol Biol Rep 2016; 43:1273-1284. [DOI: 10.1007/s11033-016-4061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023]
|
15
|
Borecka M, Zemankova P, Vocka M, Soucek P, Soukupova J, Kleiblova P, Sevcik J, Kleibl Z, Janatova M. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet 2016; 209:199-204. [DOI: 10.1016/j.cancergen.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
|
16
|
Francies FZ, Wainstein T, De Leeneer K, Cairns A, Murdoch M, Nietz S, Cubasch H, Poppe B, Van Maerken T, Crombez B, Coene I, Kerr R, Slabbert JP, Vral A, Krause A, Baeyens A, Claes KBM. BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer. BMC Cancer 2015; 15:912. [PMID: 26577449 PMCID: PMC4647511 DOI: 10.1186/s12885-015-1913-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Current knowledge of the aetiology of hereditary breast cancer in the four main South African population groups (black, coloured, Indian and white) is limited. Risk assessments in the black, coloured and Indian population groups are challenging because of restricted information regarding the underlying genetic contributions to inherited breast cancer in these populations. We focused this study on premenopausal patients (diagnosed with breast cancer before the age of 50; n = 78) and triple negative breast cancer (TNBC) patients (n = 30) from the four South African ethnic groups. The aim of this study was to determine the frequency and spectrum of germline mutations in BRCA1, BRCA2 and PALB2 and to evaluate the presence of the CHEK2 c.1100delC allele in these patients. Methods In total, 108 South African breast cancer patients underwent mutation screening using a Next-Generation Sequencing (NGS) approach in combination with Multiplex Ligation-dependent Probe Amplification (MLPA) to detect large rearrangements in BRCA1 and BRCA2. Results In 13 (12 %) patients a deleterious mutation in BRCA1/2 was detected, three of which were novel mutations in black patients. None of the study participants was found to have an unequivocal pathogenic mutation in PALB2. Two (white) patients tested positive for the CHEK2 c.1100delC mutation, however, one of these also carried a deleterious BRCA2 mutation. Additionally, six variants of unknown clinical significance were identified (4 in BRCA2, 2 in PALB2), all in black patients. Within the group of TNBC patients, a higher mutation frequency was obtained (23.3 %; 7/30) than in the group of patients diagnosed before the age of 50 (7.7 %; 6/78). Conclusion This study highlights the importance of evaluating germline mutations in major breast cancer genes in all of the South African population groups. This NGS study shows that mutation analysis is warranted in South African patients with triple negative and/or in premenopausal breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1913-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Z Francies
- iThemba LABS-National Research Foundation, Somerset West, South Africa. .,Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - T Wainstein
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - K De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - A Cairns
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - M Murdoch
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - S Nietz
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - H Cubasch
- Batho Pele Breast Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.
| | - B Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - T Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - B Crombez
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - I Coene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - R Kerr
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - J P Slabbert
- iThemba LABS-National Research Foundation, Somerset West, South Africa.
| | - A Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - A Krause
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa. .,Division of Human Genetics, National Health Laboratory Services, Johannesburg, South Africa.
| | - A Baeyens
- iThemba LABS-National Research Foundation, Somerset West, South Africa. .,Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - K B M Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
17
|
Langa BC, Oliveira MMC, Pereira SRF, Lupicki K, Marian C, Govender D, Panieri E, Hiss D, Cavalli IJ, Abdul-Rasool S, Cavalli LR. Copy Number Analysis of the DLX4 and ERBB2 Genes in South African Breast Cancer Patients. Cytogenet Genome Res 2015; 146:195-203. [PMID: 26524685 DOI: 10.1159/000439155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is one of the main causes of cancer death among South African women. Although several risk factors can be attributed to the observed high mortality rate, the biology of the tumors is not extensively investigated. Copy number gain of the DLX4 homeobox gene has been observed in breast cancer in association with poor prognosis and specific racial groups. Therefore, we aimed to assess the copy number and prognostic role of DLX4 in breast cancer from South African patients. Due to the co-location of ERBB2 and DLX4 in the 17q21 region, its copy number was also evaluated. Our results in the analysis of 66 cases demonstrated copy number gains of DLX4 and ERBB2 in 24.1 and 29.7% of the cases, respectively. Linear regression analysis showed no dependency between the copy number alterations in these genes. Although not significant, patients with DLX4 and ERBB2 gains presented a higher frequency of advanced-grade tumors. In addition, copy number alterations of these genes were not significantly differently observed in the 3 main racial groups of the Western Cape population: Colored, White, and Black. These findings indicate that gains of DLX4 and ERBB2 occur in South African breast cancer patients irrespectively of their race and factors known to influence prognosis.
Collapse
|
18
|
Leyton Y, Gonzalez-Hormazabal P, Blanco R, Bravo T, Fernandez-Ramires R, Morales S, Landeros N, Reyes JM, Peralta O, Tapia JC, Gomez F, Waugh E, Ibañez G, Pakomio J, Grau G, Jara L. Association of PALB2 sequence variants with the risk of familial and early-onset breast cancer in a South-American population. BMC Cancer 2015; 15:30. [PMID: 25636233 PMCID: PMC4323211 DOI: 10.1186/s12885-015-1033-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer (BC) in several populations. Nevertheless its contribution in the South-American population is unknown. The goal of this study was to determine the prevalence of PALB2 mutations in the Chilean population. Methods 100 Chilean BRCA1/2-negatives familial BC cases were included for the PALB2 mutation analysis. We use conformational sensitive gel electrophoresis and direct sequencing. Using a case-control design, we studied the identified variants in 436 BC cases and 809 controls to evaluate their possible association with BC risk. Results No pathogenic mutations were detected. We identified three variants, the variant c.1861C > A not previously described was found in one of the 436 cases and none of the 809 controls. The bioinformatic analyses indicate that this variant probably is not pathogenic. PALB2 c.1676A > G (rs152451A/G) and c.2993C > T (rs45551636C/T) variants were significantly associated with increased BC risk only in cases with a strong family history of BC (OR = 1.9 [CI 95% 1.3-2.8] p < 0.01 and OR = 3.3 [CI 95% 1.4-7.3] p < 0.01, respectively). The rs152451A/G-rs45551636C/T composite genotype produce increase of the BC risk in cases with a strong family history of BC (OR = 3.6 [CI 95% 1.7-8.0] p = 0.003). The rs152451-G/rs45551636-C and rs152451-G/rs45551636-T haplotypes were associated with an increased BC risk only in cases with a strong family history of BC (OR = 1.6 [CI 95% 1.0-2.5] p = 0.05 and OR = 3.7 [CI 95% 1.8-7.5] p < 0.001, respectively). Conclusion Our results suggest that PALB2 c.1676A > G and c.2993C > T play roles in BC risk in women with a strong family history of BC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1033-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yessica Leyton
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Patricio Gonzalez-Hormazabal
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Rafael Blanco
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Teresa Bravo
- National Cancer Society (Corporación Nacional del Cáncer -CONAC-), Santiago, Chile.
| | - Ricardo Fernandez-Ramires
- Research Institute in Dental Sciences, School of Odontology, University of Chile, Sergio Livingstone Pohlhammer 943, Santiago, Chile.
| | - Sebastian Morales
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Natalia Landeros
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | | | - Octavio Peralta
- Clínca Las Condes, Santiago, Chile. .,Department of Gyneacology and Obstetrics, School of Medicine, University of Chile, Av Santa Rosa 1234, Santiago, Chile.
| | - Julio C Tapia
- Cell Transformation Laboratory, Institute of Biomedical Sciences (ICBM), School of Medicine, Unversity of Chile, Av. Independencia 1027, Santiago, Chile.
| | | | | | - Gladys Ibañez
- Clínica Dávila, Av. Recoleta 464, Santiago, Chile. .,Hospital San José, San José 1196, Santiago, Chile.
| | - Janara Pakomio
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Gilberto Grau
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| | - Lilian Jara
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile.
| |
Collapse
|
19
|
Abstract
PALB2 [partner and localizer of BRCA2 (breast cancer early-onset 2)] [corrected] has emerged as a key player in the maintenance of genome integrity. Biallelic mutations in PALB2 cause FA (Fanconi's anaemia) subtype FA-N, a devastating inherited disorder marked by developmental abnormalities, bone marrow failure and childhood cancer susceptibility, whereas monoallelic mutations predispose to breast, ovarian and pancreatic cancer. The tumour suppressor role of PALB2 has been intimately linked to its ability to promote HR (homologous recombination)-mediated repair of DNA double-strand breaks. Because PALB2 lies at the crossroads between FA, HR and cancer susceptibility, understanding its function has become the primary focus of several studies. The present review discusses a current synthesis of the contribution of PALB2 to these pathways. We also provide a molecular description of FA- or cancer-associated PALB2 mutations.
Collapse
|
20
|
Aoude LG, Xu M, Zhao ZZ, Kovacs M, Palmer JM, Johansson P, Symmons J, Trent JM, Martin NG, Montgomery GW, Brown KM, Hayward NK. Assessment of PALB2 as a candidate melanoma susceptibility gene. PLoS One 2014; 9:e100683. [PMID: 24949998 PMCID: PMC4065098 DOI: 10.1371/journal.pone.0100683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023] Open
Abstract
Partner and localizer of BRCA2 (PALB2) interacts with BRCA2 to enable double strand break repair through homologous recombination. Similar to BRCA2, germline mutations in PALB2 have been shown to predispose to Fanconi anaemia as well as pancreatic and breast cancer. The PALB2/BRCA2 protein interaction, as well as the increased melanoma risk observed in families harbouring BRCA2 mutations, makes PALB2 a candidate for melanoma susceptibility. In order to assess PALB2 as a melanoma predisposition gene, we sequenced the entire protein-coding sequence of PALB2 in probands from 182 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, and BAP1. In addition, we interrogated whole-genome and exome data from another 19 kindreds with a strong family history of melanoma for deleterious mutations in PALB2. Here we report a rare known deleterious PALB2 mutation (rs118203998) causing a premature truncation of the protein (p.Y1183X) in an individual who had developed four different cancer types, including melanoma. Three other family members affected with melanoma did not carry the variant. Overall our data do not support a case for PALB2 being associated with melanoma predisposition.
Collapse
Affiliation(s)
- Lauren G. Aoude
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Mai Xu
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Zhen Zhen Zhao
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael Kovacs
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jane M. Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Judith Symmons
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | | | | | - Kevin M. Brown
- National Cancer Institute, Bethesda, Maryland, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | | |
Collapse
|
21
|
An Integrated in Silico Approach to Analyze the Involvement of Single Amino Acid Polymorphisms in FANCD1/BRCA2-PALB2 and FANCD1/BRCA2-RAD51 Complex. Cell Biochem Biophys 2014; 70:939-56. [DOI: 10.1007/s12013-014-0002-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Janatova M, Kleibl Z, Stribrna J, Panczak A, Vesela K, Zimovjanova M, Kleiblova P, Dundr P, Soukupova J, Pohlreich P. The PALB2 gene is a strong candidate for clinical testing in BRCA1- and BRCA2-negative hereditary breast cancer. Cancer Epidemiol Biomarkers Prev 2013; 22:2323-32. [PMID: 24136930 DOI: 10.1158/1055-9965.epi-13-0745-t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several reports indicate that inherited mutations in the PALB2 gene predispose to breast cancer. However, there is little agreement about the clinical relevance and usefulness of mutation screening in this gene. We analyzed the prevalence and spectrum of germline mutations in PALB2 to estimate their contribution to hereditary breast and/or ovarian cancer in the Czech Republic. METHODS The entire PALB2 coding region was sequenced in 409 breast/ovarian cancer patients negative for BRCA1 and BRCA2 mutations. Testing for large genomic rearrangements (LGR) was performed by multiplex ligation-dependent probe amplification (MLPA) analysis. RESULTS We have identified 13 different pathogenic alterations including 10 truncating mutations and three LGRs in 16 of 409 patients (3.9%), whereas one truncating mutation was found in a group of 1,226 controls (0.08%; P = 2.6 × 10(-9)). Three novel LGRs included deletions involving exons 7-8 and 9-10, respectively, and a duplication spanning exons 9-11. Five frameshift and two nonsense mutations were novel, whereas three truncating mutations were described previously. The only recurrent mutation was the c.172_175delTTGT detected in four unrelated breast cancer individuals. CONCLUSIONS Our analyses demonstrated the significant role of the PALB2 gene in breast cancer susceptibility. The highest frequency of PALB2 mutations (comparable with that previously reported for BRCA2) was found in a subgroup of patients with hereditary breast cancer (HBC) (13/235; 5.5%). IMPACT Our results show that mutation analysis of the PALB2 gene, including the analysis of LGRs, is primarily indicated in patients with HBC in case of their BRCA1 and BRCA2 negativity.
Collapse
Affiliation(s)
- Marketa Janatova
- Authors' Affiliations: Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague; Institutes of Biology and Medical Genetics and Pathology, and Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Low prevalence of germlinePALB2mutations in Australian triple-negative breast cancer. Int J Cancer 2013; 134:301-5. [DOI: 10.1002/ijc.28361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022]
|
24
|
Phuah SY, Lee SY, Kang P, Kang IN, Yoon SY, Thong MK, Hartman M, Sng JH, Yip CH, Taib NAM, Teo SH. Prevalence of PALB2 mutations in breast cancer patients in multi-ethnic Asian population in Malaysia and Singapore. PLoS One 2013; 8:e73638. [PMID: 23977390 PMCID: PMC3748013 DOI: 10.1371/journal.pone.0073638] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022] Open
Abstract
Background The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. Methods We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. Results By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.
Collapse
Affiliation(s)
- Sze Yee Phuah
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Sheau Yee Lee
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Peter Kang
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - In Nee Kang
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Sook-Yee Yoon
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Meow Keong Thong
- Department of Paediatrics, Faculty of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Surgery, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jen-Hwei Sng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Har Yip
- Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
25
|
Southey MC, Teo ZL, Winship I. PALB2 and breast cancer: ready for clinical translation! APPLICATION OF CLINICAL GENETICS 2013; 6:43-52. [PMID: 23935381 PMCID: PMC3735037 DOI: 10.2147/tacg.s34116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For almost two decades, breast cancer clinical genetics has operated in an environment where a heritable cause of breast cancer susceptibility is identified in the vast minority of women seeking advice about their personal and/or family history of breast and/or ovarian cancer. A new wave of genetic information is upon us that promises to provide an explanation for the greater proportion of current missing heritability of breast cancer. Whilst researchers refine bioinformatic and analytic methodology necessary to interpret the new genetic data, attention needs to be paid to defining appropriate and coordinated pathways for the translation of this information so that it can be applied in clinical genetic services for the benefit of the majority of women who currently have no explanation for their breast cancer susceptibility. The search for additional breast cancer susceptibility genes remains a very active area of research. Exhausting the power of linkage studies that identified BRCA1 and BRCA2, the research community moved to candidate gene studies that led to the identification of ATM, BRIP1, CHEK2, and PALB2 as so-called "moderate-risk" breast cancer susceptibility genes. Mutations in these genes are rare and although early reports suggested that, on average, they are associated with moderate risks of breast cancer; population-based studies have demonstrated that at least some mutations in these genes are associated with breast cancer risks that are comparable to the average risk associated with BRCA2 mutations. The search for additional breast cancer susceptibility genes has now moved onto research platforms applying massively parallel sequencing capable of sequencing whole human exomes and genomes in single instrument runs. These programs are identifying a large number of additional putative breast cancer susceptibility genes, many of which are currently undergoing validation. It is highly anticipated that the remaining missing heritability of breast cancer will be due to mutations in many different genes, each explaining a small proportion of the currently unexplained heritable breast cancer susceptibility. The characterization of PALB2 as a breast cancer susceptibility gene and subsequent research that has refined our understanding of the prevalence and penetrance of heritable mutations in PALB2 offers a precious opportunity to use the data as a model and develop modes of translation that would be appropriate for the anticipated volume of imminent new information.
Collapse
Affiliation(s)
- Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
26
|
Abstract
It is estimated that 5% to 10% of pancreatic cancer is familial. Although there is evidence of a major pancreatic cancer susceptibility gene, the majority of families with multiple cases of pancreatic cancer do not have an identifiable causative gene or syndrome. However, a subset of pancreatic cancer is attributable to known inherited cancer predisposition syndromes, including several hereditary breast cancer genes (BRCA1, BRCA2, and PALB2), CDKN2A, hereditary pancreatitis, hereditary nonpolyposis colorectal cancer, and Peutz-Jeghers syndrome. In addition to explaining a proportion of familial pancreatic cancer, individuals with these conditions are at increased risk for pancreatic cancer. Relatives from familial pancreatic cancer kindreds without one of these identifiable syndromes may have as high as a 32-fold risk of pancreatic cancer, depending on the number of affected first-degree relatives. Such high-risk individuals may benefit from increased surveillance, and strategies for early detection of pancreatic cancer are under evaluation.
Collapse
|
27
|
Tischkowitz M, Sabbaghian N, Hamel N, Pouchet C, Foulkes WD, Mes-Masson AM, Provencher DM, Tonin PN. Contribution of the PALB2 c.2323C>T [p.Q775X] founder mutation in well-defined breast and/or ovarian cancer families and unselected ovarian cancer cases of French Canadian descent. BMC MEDICAL GENETICS 2013; 14:5. [PMID: 23302520 PMCID: PMC3549741 DOI: 10.1186/1471-2350-14-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/03/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The PALB2 c.2323C>T [p.Q775X] mutation has been reported in at least three breast cancer families and breast cancer cases of French Canadian descent and this has been attributed to common ancestors. The number of mutation-positive cases reported varied based on criteria of ascertainment of index cases tested. Although inherited PALB2 mutations are associated with increased risks of developing breast cancer, risk to ovarian cancer has not been fully explored in this demographically unique population. METHODS We screened the PALB2 p.Q775X variant in 71 families with at least three cases of breast cancer (n=48) or breast and ovarian cancers (n=23) that have previously been found negative for at least the most common BRCA1 and BRCA2 mutations reported in the French Canadian population and in 491 women of French Canadian descent who had invasive ovarian cancer and/or low malignant potential tumors of the major histopathological subtypes. RESULTS We identified a PALB2 p.Q775X carrier in a breast cancer family, who had invasive ductal breast carcinomas at 39 and 42 years of age. We also identified a PALB2 p.Q775X carrier who had papillary serous ovarian cystadenocarcinoma at age 58 among the 238 serous subtype ovarian cancer cases investigated, who also had breast cancer at age 52. CONCLUSION Our findings, taken together with previous reports, support adding PALB2 c.2323C>T p.Q775X to the list of cancer susceptibility genes for which founder mutations have been identified in the French Canadian population.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: variant reclassification and surgical decisions. Genet Med 2012; 13:998-1005. [PMID: 21811163 DOI: 10.1097/gim.0b013e318226fc15] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE : Approximately 5-10% of patients who undergo genetic testing of BRCA1 and BRCA2 receive a variant of unknown significance (VUS) result. The ambiguous nature of a VUS may increase difficulty in patient understanding and decision making regarding risk reduction and surveillance options, including cancer risk-reducing surgeries. VUS reclassification to benign or deleterious may occur in time; however, clinical decisions may need to be made expeditiously, and some patients may pursue irreversible treatments before VUS reclassification. METHODS : We reviewed the surgical decisions of 107 women postdisclosure of a BRCA VUS result counseled at our institute between 1998 and 2009. CONCLUSION : Among women receiving a BRCA VUS result at our center, 11 of 107 (10.3%) pursued cancer risk-reducing mastectomy and 22 of 107 (20.6%) pursued cancer risk-reducing bilateral salpingo-oophorectomy. Reclassification of VUS occurred up to 9 years after testing, and 5 of 22 (22.7%) women followed up for 8 or more years continue to have a VUS result. We discuss considerations for providers of genetic services to discuss with patients who receive a VUS result.
Collapse
|
30
|
Ghiorzo P, Pensotti V, Fornarini G, Sciallero S, Battistuzzi L, Belli F, Bonelli L, Borgonovo G, Bruno W, Gozza A, Gargiulo S, Mastracci L, Nasti S, Palmieri G, Papadia F, Pastorino L, Russo A, Savarino V, Varesco L, Bernard L, Bianchi Scarrà G. Contribution of germline mutations in the BRCA and PALB2 genes to pancreatic cancer in Italy. Fam Cancer 2012; 11:41-47. [PMID: 21989927 DOI: 10.1007/s10689-011-9483-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PC) is the third most common cancer associated with BRCA mutations. Most notice has been given to BRCA2, while the association between BRCA1 and PC is less widely reported. Recently, PALB2 has been implicated in both PC and breast cancer (BC) susceptibility. We selected 29 Italian PC patients from a case-control study of PC according to their personal and family history of both PC and breast/ovarian cancer (BC/OC) and tested them for presence of germline mutations in BRCA1, BRCA2 and PALB2. We identified no germline mutations or deletions in PALB2, but detected 7 BRCA mutations (4 in BRCA1 and 3 in BRCA2). These findings suggest that PALB2 does not play a major role in PC susceptibility in our population. As we found an almost equal frequency of germline mutations in BRCA1 and BRCA2, germline alterations in either of these genes may explain a subset of Italian families presenting both PC and BC/OC. Moreover, as we began the observation of these families from probands who are affected by PC, we provide here a direct assessment of the role of PALB2 and BRCA mutations in PC susceptibility.
Collapse
Affiliation(s)
- P Ghiorzo
- Department of Oncology, Biology and Genetics, University of Genoa, V.le Benedetto XV, 6, 16129, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rizzolo P, Silvestri V, Falchetti M, Ottini L. Inherited and acquired alterations in development of breast cancer. APPLICATION OF CLINICAL GENETICS 2011; 4:145-58. [PMID: 23776375 PMCID: PMC3681186 DOI: 10.2147/tacg.s13226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breast cancer is the most common cancer among women, accounting for about 30% of all cancers. In contrast, breast cancer is a rare disease in men, accounting for less than 1% of all cancers. Up to 10% of all breast cancers are hereditary forms, caused by inherited germ-line mutations in "high-penetrance," "moderate-penetrance," and "low-penetrance" breast cancer susceptibility genes. The remaining 90% of breast cancers are due to acquired somatic genetic and epigenetic alterations. A heterogeneous set of somatic alterations, including mutations and gene amplification, are reported to be involved in the etiology of breast cancer. Promoter hypermethylation of genes involved in DNA repair and hormone-mediated cell signaling, as well as altered expression of micro RNAs predicted to regulate key breast cancer genes, play an equally important role as genetic factors in development of breast cancer. Elucidation of the inherited and acquired genetic and epigenetic alterations involved in breast cancer may not only clarify molecular pathways involved in the development and progression of breast cancer itself, but may also have an important clinical and therapeutic impact on improving the management of patients with the disease.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
32
|
Blanco A, de la Hoya M, Balmaña J, Ramón y Cajal T, Teulé A, Miramar MD, Esteban E, Infante M, Benítez J, Torres A, Tejada MI, Brunet J, Graña B, Balbín M, Pérez-Segura P, Osorio A, Velasco EA, Chirivella I, Calvo MT, Feliubadaló L, Lasa A, Díez O, Carracedo A, Caldés T, Vega A. Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat 2011; 132:307-15. [PMID: 22052327 DOI: 10.1007/s10549-011-1842-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/15/2011] [Indexed: 12/11/2022]
Abstract
It has been demonstrated that monoallelic PALB2 (Partner and Localizer of BRCA2) gene mutations predispose to familial breast cancer. Some of the families reported with germline PALB2 mutations presented male breast cancer as a characteristic clinical feature. Therefore, we wanted to investigate the contribution of germline PALB2 mutations in a set of 131 Spanish BRCA1/BRCA2-negative breast/ovarian cancer families with at least one male breast cancer case. The analysis included direct sequencing of all coding exons and intron/exon boundaries as well as a Multiplex Ligation-dependent Probe Amplification-based analysis of genomic rearrangements. For the first time we have identified a genomic rearrangement of PALB2 gene involving a large deletion from exon 7 to 11 in a breast cancer family. We have also identified several PALB2 variants, but no other obvious deleterious PALB2 mutation has been found. Thus, our study does not support an enrichment of PALB2 germline mutations in the subset of breast cancer families with male breast cancer cases. The identification of intronic and exonic variants indicates the necessity of assessing the implications of variants that do not lead to PALB2 truncation in the pathoghenicity of the PALB2 gene.
Collapse
Affiliation(s)
- Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBER-ER, IDIS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zheng Y, Zhang J, Niu Q, Huo D, Olopade OI. Novel germline PALB2 truncating mutations in African American breast cancer patients. Cancer 2011; 118:1362-70. [PMID: 21932393 DOI: 10.1002/cncr.26388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been demonstrated that the partner and localizer of breast cancer 2 (PALB2) acts as a bridging molecule between the breast cancer 1 (BRCA1) and BRCA2 proteins and is responsible for facilitating BRCA2-mediated DNA repair. Truncating mutations in the PALB2 gene reportedly are enriched in patients with Fanconi anemia and breast cancer in various populations. METHODS The authors evaluated the contribution of PALB2 germline mutations in 279 African American women with breast cancer, including 29 patients with a strong family history, 29 patients with a moderate family history, 75 patients with a weak family history, and 146 patients with nonfamilial or sporadic breast cancer. RESULTS After direct sequencing of all the coding exons, exon/intron boundaries, and 5' and 3' untranslated regions of PALB2, 3 novel, monoallelic, truncating mutations (1.08%; 3 in 279 patients) were identified (c.758dupT [exon 4], c.1479delC [exon 4], and c.3048delT [exon 10]) together with 50 sequence variants, 27 of which were novel. None of the truncating mutations were identified in a group of 262 controls from the same population. CONCLUSIONS PALB2 mutations were present in both familial and nonfamilial breast cancers among African Americans. Rare PALB2 mutations accounted for a small but substantial proportion of patients with breast cancer.
Collapse
Affiliation(s)
- Yonglan Zheng
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
34
|
Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK, Stamatoyannopoulos JA, King MC. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 2011; 71:2222-9. [PMID: 21285249 PMCID: PMC3059378 DOI: 10.1158/0008-5472.can-10-3958] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited mutations in the BRCA2-interacting protein PALB2 are known to be associated with increased risks of developing breast cancer. To evaluate the contribution of PALB2 to familial breast cancer in the United States, we sequenced the coding sequences and flanking regulatory regions of the gene from constitutional genomic DNA of 1,144 familial breast cancer patients with wild-type sequences at BRCA1 and BRCA2. Overall, 3.4% (33/972) of patients not selected by ancestry and 0% (0/172) of patients specifically of Ashkenazi Jewish ancestry were heterozygous for a nonsense, frameshift, or frameshift-associated splice mutation in PALB2. Mutations were detected in both male and female breast cancer patients. All mutations were individually rare: the 33 heterozygotes harbored 13 different mutations, 5 previously reported and 8 novel mutations. PALB2 heterozygotes were 4-fold more likely to have a male relative with breast cancer (P = 0.0003), 6-fold more likely to have a relative with pancreatic cancer (P = 0.002), and 1.3-fold more likely to have a relative with ovarian cancer (P = 0.18). Compared with their female relatives without mutations, increased risk of developing breast cancer for female PALB2 heterozygotes was 2.3-fold (95% CI: 1.5-4.2) by age 55 and 3.4-fold (95% CI: 2.4-5.9) by age 85. Loss of the wild-type PALB2 allele was observed in laser-dissected tumor specimens from heterozygous patients. Given this mutation prevalence and risk, consideration might be given to clinical testing of PALB2 by complete genomic sequencing for familial breast cancer patients with wild-type sequences at BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Silvia Casadei
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| | - Barbara M. Norquist
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle WA
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| | - Sunday Stray
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| | - Jessica B. Mandell
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| | - Ming K. Lee
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| | - John A. Stamatoyannopoulos
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Division of Oncology, Department of Medicine, University of Washington, Seattle WA
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA
- Department of Genome Sciences, University of Washington, Seattle WA
| |
Collapse
|
35
|
Ding YC, Steele L, Chu LH, Kelley K, Davis H, John EM, Tomlinson GE, Neuhausen SL. Germline mutations in PALB2 in African-American breast cancer cases. Breast Cancer Res Treat 2011; 126:227-30. [PMID: 21113654 PMCID: PMC3457798 DOI: 10.1007/s10549-010-1271-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
Abstract
Breast cancer incidence is lower in African Americans than in Caucasian Americans. However, African-American women have higher breast cancer mortality rates and tend to be diagnosed with earlier-onset disease. Identifying factors correlated to the racial/ethnic variation in the epidemiology of breast cancer may provide better understanding of the more aggressive disease at diagnosis. Truncating germline mutations in PALB2 have been identified in approximately 1% of early-onset and/or familial breast cancer cases. To date, PALB2 mutation testing has not been performed in African-American breast cancer cases. We screened for germline mutations in PALB2 in 139 African-American breast cases by denaturing high-performance liquid chromatography and direct sequencing. Twelve variants were identified in these cases and none caused truncation of the protein. Three missense variants, including two rare variants (P8L and T300I) and one common variant (P210L), were predicted to be pathogenic, and were located in a coiled-coil domain of PALB2 required for RAD51- and BRCA1-binding. We investigated and found no significant association between the P210L variant and breast cancer risk in a small case-control study of African-American women. This study adds to the literature that PALB2 mutations, although rare, appear to play a role in breast cancer in all populations investigated to date.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Li-Hao Chu
- Department of Research & Evaluation, Kaiser Permanente, Pasadena, CA, USA
| | - Karen Kelley
- Department of Veteran’s Affairs Medical Center, Long Beach, CA, USA
| | - Helen Davis
- Department of General Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Esther M. John
- Cancer Prevention Institute of California (formerly the Northern California Cancer Center), Fremont, CA and Stanford University School of Medicine and Stanford Cancer Center, Stanford, CA, USA
| | - Gail E. Tomlinson
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio TX and Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
36
|
Bogdanova N, Sokolenko AP, Iyevleva AG, Abysheva SN, Blaut M, Bremer M, Christiansen H, Rave-Fränk M, Dörk T, Imyanitov EN. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat 2010; 126:545-50. [PMID: 21165770 PMCID: PMC3291835 DOI: 10.1007/s10549-010-1290-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
Abstract
Since germline mutations in the PALB2 (Partner and Localizer of BRCA2) gene have been identified as breast cancer (BC) susceptibility alleles, the geographical spread and risks associated with PALB2 mutations are subject of intense investigation. Patients with bilateral breast cancer constitute a valuable group for genetic studies. We have thus scanned the whole coding region of PALB2 in a total of 203 German or Russian bilateral breast cancer patients using an approach based on high-resolution melting analysis and direct sequencing of genomic DNA samples. Truncating PALB2 mutations were identified in 4/203 (2%) breast cancer patients with bilateral disease. The two nonsense mutations, p.E545X and p.Q921X, have not been previously described whereas the two other mutations, p.R414X and c.509_510delGA, are recurrent. Our results indicate that PALB2 germline mutations account for a small, but not negligible, proportion of bilateral breast carcinomas in German and Russian populations.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Partner and localizer of BRCA2 (PALB2) was originally identified as a BRCA2-interacting protein that is crucial for key BRCA2 genome caretaker functions. It subsequently became clear that PALB2 was another Fanconi anemia (FA) gene (FANCN), and that monoallelic PALB2 mutations are associated with increased risk of breast and pancreatic cancer. Mutations in PALB2 have been identified in breast cancer families worldwide, and recent studies have shown that PALB2 also interacts with BRCA1. Here, we summarize the molecular functions and clinical phenotypes of this key DNA repair pathway component and discuss how its discovery has advanced our knowledge of both FA and adult cancer predisposition.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
38
|
Guénard F, Pedneault CSL, Ouellette G, Labrie Y, Simard J, Durocher F. Evaluation of the Contribution of the Three Breast Cancer Susceptibility Genes CHEK2, STK11, and PALB2 in Non-BRCA1/2 French Canadian Families with High Risk of Breast Cancer. Genet Test Mol Biomarkers 2010; 14:515-26. [DOI: 10.1089/gtmb.2010.0027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Frédéric Guénard
- Cancer Genomics Laboratory, Department of Molecular Medicine, Laval University, Québec, Canada
| | | | - Geneviève Ouellette
- Cancer Genomics Laboratory, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Yvan Labrie
- Cancer Genomics Laboratory, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Jacques Simard
- Cancer Genomics Laboratory, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Francine Durocher
- Cancer Genomics Laboratory, Department of Molecular Medicine, Laval University, Québec, Canada
| |
Collapse
|
39
|
Adank MA, van Mil SE, Gille JJP, Waisfisz Q, Meijers-Heijboer H. PALB2 analysis in BRCA2-like families. Breast Cancer Res Treat 2010; 127:357-62. [PMID: 20582465 DOI: 10.1007/s10549-010-1001-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/14/2010] [Indexed: 01/10/2023]
Abstract
BRCA2 and PALB2 function together in the Fanconi anemia (FA)-Breast Cancer (BRCA) pathway. Mono-allelic and bi-allelic BRCA2 and PALB2 mutation carriers share many clinical characteristics. Mono-allelic germline mutations of BRCA2 and PALB2 are risk alleles of female breast cancer and have also been reported in familial pancreatic cancer, and bi-allelic mutations cause a severe form of Fanconi anemia. In view of these similarities, we investigated whether the prevalence of PALB2 mutations was increased in breast cancer families with the occurrence of BRCA2 associated tumours other than female breast cancer. PALB2 mutation analysis was performed in 110 non-BRCA1/2 cancer patients: (a) 53 ovarian cancer patients from female breast-and/or ovarian cancer families; (b) 45 breast cancer patients with a first or second degree relative with pancreatic cancer; and (c) 12 male breast cancer patients from female breast cancer families. One truncating PALB2 mutation, c.509_510delGA, resulting in p.Arg170X, was found in a male breast cancer patient. We conclude that germline mutations of PALB2 do not significantly contribute to cancer risk in non-BRCA1/2 cancer families with at least one patient with ovarian cancer, male breast cancer, and/or pancreatic cancer.
Collapse
Affiliation(s)
- M A Adank
- Department of Clinical Genetics, VU Medical Center, HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Rantakari P, Nikkilä J, Jokela H, Ola R, Pylkäs K, Lagerbohm H, Sainio K, Poutanen M, Winqvist R. Inactivation of Palb2 gene leads to mesoderm differentiation defect and early embryonic lethality in mice. Hum Mol Genet 2010; 19:3021-9. [PMID: 20484223 DOI: 10.1093/hmg/ddq207] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations of the PALB2 tumor suppressor gene in humans are associated with hereditary predisposition to breast and also some other cancers. In the present study, we have characterized mice deficient in Palb2. The data show that the Palb2((+/-)) mice are normal and fertile, and lack macroscopic tumors when followed up till the age of 8 months. Homozygous (HO) Palb2((-/-)) mice present with embryonic lethality and die at E9.5 at the latest. The mutant embryos are smaller in size, developmentally retarded and display defective mesoderm differentiation after gastrulation. In Palb2((-/-)) embryos, the expression of cyclin-dependent kinase inhibitor p21 is increased, and Palb2((-/-)) blastocysts show a growth defect in vitro. Hence, the phenotype of the Palb2((-/-)) mice in many regards resembles those previously reported for Brca1 and Brca2 knockout mice. The similarity in the phenotypes between Palb2, Brca1 and Brca2 knockout mice further supports the functional relationship shown in vitro for these three proteins. Accordingly, our data in vivo suggest that a key function for PALB2 is to interact with and to build up appropriate communication between BRCA1 and BRCA2, thereby licensing the successful performance of the physiological tasks mediated by these two proteins, particularly in homologous recombination and in proper DNA damage response signaling.
Collapse
Affiliation(s)
- Pia Rantakari
- Department of Physiology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Germline mutations in the BRCA1 and BRCA2 genes are characterized by deficient repair of DNA double-strand breaks by homologous recombination. Defective DNA double-strand break repair has been not only implicated as a key contributor to tumorigenesis in mutation carriers but also represents a potential target for therapy. The transcriptional similarities between BRCA1-deficient tumors and sporadic tumors of the basal-like subtype have led to the investigation of homologous recombination repair-directed therapy in triple-negative tumors, which demonstrates overlap with the basal-like subtype. We broaden the scope of this topic by addressing a "repair-defective" rather than "BRCA1-like" phenotype. We discuss structural and functional aspects of key repair proteins including BRCA1, BRCA2, BRCA1 interacting protein C-terminal helicase 1, and partner and localizer of BRCA2 and describe the phenotypic consequences of their loss at the cellular, tissue, and organism level. We review potential mechanisms of repair pathway dysfunction in sporadic tumors and address how the identification of such defects may guide the application of repair-directed therapies.
Collapse
|
42
|
Hollestelle A, Wasielewski M, Martens JWM, Schutte M. Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev 2010; 20:268-76. [PMID: 20346647 DOI: 10.1016/j.gde.2010.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
To date, five moderate-risk breast cancer susceptibility genes have been convincingly identified: CHEK2, ATM, BRIP1, PALB2, and NBS1. Moderate-risk breast cancer alleles confer increased breast cancer risks of two to fourfold compared to the 10% risk in the general population. In contrast to the high-risk BRCA1 and BRCA2 genes, moderate-risk genes typically have a limited number of variants that confer breast cancer risks. The prevalence of the variants usually varies widely among different geographical or ethnic populations, ranging from essentially absent up to 1.5% (i.e. 'rare' variants). Since moderate-risk breast cancer alleles are clinically not recognizable when inherited as single mutant, one usually encounters them in a polygenic setting and consequently in incomplete cosegregation with the breast cancer phenotype. As a result, discovery of moderate-risk breast cancer genes requires conclusive statistical evidence from association studies of hundreds of breast cancer cases and population-matched controls.
Collapse
Affiliation(s)
- Antoinette Hollestelle
- Department of Medical Oncology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Kim JH, Choi DH, Cho DY, Ahn SH, Son BH, Haffty BG. PALB2 mutations 1592delT and 229delT are not present in Korean breast cancer patients negative for BRCA1 and BRCA2 mutations. Breast Cancer Res Treat 2010; 122:303-6. [PMID: 20213081 DOI: 10.1007/s10549-010-0806-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 01/25/2023]
Abstract
PALB2 is a recently discovered breast cancer susceptibility gene, and mutations in the gene have been demonstrated to confer about twofold higher risk of breast cancer. Truncating mutations in PALB2 gene have been identified in varied populations. However, PALB2's significance to breast cancer has not been investigated in the Korean population. In this study, we evaluated the frequency of PALB2 1592delT and 229delT mutations in 300 Korean breast cancer patients diagnosed with either familial or early-onset breast cancer. All patients were confirmed negative for BRCA1 and BRCA2 mutations. Neither 1592delT nor 229delT mutations was found in any of the study cohort. Our results imply that these mutations are absent or rare in Korean patients who are negative for BRCA1 and BRCA2 mutations. We found no evidence to recommend screening for these mutations in the Korean population. However, PALB2 mutations have been demonstrated infrequent and inhomogeneous across investigated populations. Thus, screening the whole PALB2 gene for novel mutations is required to elucidate its significance in predisposition to breast cancer in Korean women.
Collapse
|
44
|
Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat 2009; 121:203-10. [PMID: 19763819 DOI: 10.1007/s10549-009-0540-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
It has been proposed that rare variants within the double strand break repair genes CHEK2, BRIP1 and PALB2 predispose to breast cancer. The aim of this study was to evaluate the prevalence of these variants in an Irish breast cancer cohort and determine their contribution to the development of breast cancer in the west of Ireland. We evaluated the presence of CHEK2_1100delC variant in 903 breast cancer cases and 1,016 controls. Six previously described variants within BRIP1 and five within PALB2 were screened in 192 patients with early-onset or familial breast cancer. Where a variant was evident, it was then examined in the remainder of our 711 unselected breast cancer cases. CHEK2_1100delC was found in 5/903 (0.5%) breast cancer cases compared to 1/1016 (0.1%) controls. One mutation at BRIP1 (2392 C>T) was identified in the early-onset/familial cohort. Examination of this variant in the remainder of our cohort (711 cases) failed to identify any additional cases. None of the previously described PALB2 variants were demonstrated in the early-onset/familial cohort. We show evidence of CHEK2_1100delC and BRIP1 2392 C>T within the Irish population. CHEK2_1100delC and BRIP1 mutations incidence in Ireland is similar to that found in other unselected breast cancer cohorts from northern European countries. We found no evidence to suggest that PALB2 mutation is an important breast cancer predisposition gene in this population.
Collapse
|
45
|
Papi L, Putignano AL, Congregati C, Piaceri I, Zanna I, Sera F, Morrone D, Genuardi M, Palli D. A PALB2 germline mutation associated with hereditary breast cancer in Italy. Fam Cancer 2009; 9:181-5. [PMID: 19763884 DOI: 10.1007/s10689-009-9295-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Abstract
Recently, it has been demonstrated that monoallelic PALB2 mutations predispose to familial breast cancer. We investigated the contribution of PALB2 mutations in a set of 132 Italian BRCA1/BRCA2-negative breast cancer families; one truncating PALB2 mutation, c.2257C>T, resulting in p.Arg753X, was identified in a woman and her daughter, with breast cancer diagnosed at 60 and 31 years old, respectively. This study supports the recent observation that PALB2 mutation are present, although infrequently, in familial BRCA1/BRCA2-negative breast cancer cases; moreover, it sustains latest evidences that some PALB2 mutations are associated with a substantially increased risk of breast cancer.
Collapse
Affiliation(s)
- Laura Papi
- Medical Genetics Unit, Department of Clinical Physiopathology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|