1
|
Cashman R, Haim-Abadi G, Lezmi E, Philip H, Nissenbaum J, Viner-Breuer R, Kozulin C, Golan-Lev T, Gadban A, Spinner-Potesky S, Yanuka O, Kopper O, Benvenisty N. Genome-Wide Screening in Haploid Stem Cells Reveals Synthetic Lethality Targeting MLH1 and TP53 Deficient Tumours. Cell Prolif 2025:e13788. [PMID: 39814695 DOI: 10.1111/cpr.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/18/2025] Open
Abstract
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death, whereas each of them separately does not. Synthetic lethality can be a useful tool in personalised oncology. MLH1 is a cancer-related gene that has a central role in DNA mismatch-repair and TP53 is the most frequently mutated gene in cancer. To identify genetic events that can lead to tumour death once either MLH1 or TP53 is mutated, a genome-wide genetic screening was performed. Thus, mutations in all protein-coding genes were introduced into haploid human embryonic stem cells (hESCs) with and without loss-of-function mutations in the MLH1 or TP53 genes. These experiments uncovered a list of putative hits with EXO1, NR5A2, and PLK2 genes for MLH1, and MYH10 gene for TP53 emerging as the most promising candidates. Synthetic lethal interactions of these genes were validated genetically or chemically using small molecules that inhibit these genes. The specific effects of SR1848, which inhibits NR5A2, ON1231320 or BI2536, which inhibits PLK2, and blebbistatin, which inhibits MYH10, were further validated in cancer cell lines. Finally, animal studies with CCL xenografts showed the selective effect of the small molecule BI2536 on MLH1-null tumours and of blebbistatin on TP53-mutated tumours. Thus, demonstrating their potential for personalised medicine, and the robustness of genetic screening in haploid hESCs in the context of cancer therapeutics.
Collapse
Affiliation(s)
| | - Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Elyad Lezmi
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Salman AM, Babaei E, Al-Khafaji ASK. Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474). J Adv Pharm Technol Res 2024; 15:43-48. [PMID: 38389973 PMCID: PMC10880915 DOI: 10.4103/japtr.japtr_279_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 02/24/2024] Open
Abstract
The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC50) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC50 in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.
Collapse
Affiliation(s)
- Ahmed Mohammed Salman
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
3
|
Saleh NH, Al-Khafaji ASK, Babaei E. Study of hesperetin effect on modulating transcription levels of MLH1 and MSH2 genes in SKBR3 breast cancer cell line. J Adv Pharm Technol Res 2023; 14:338-344. [PMID: 38107455 PMCID: PMC10723173 DOI: 10.4103/japtr.japtr_278_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 12/19/2023] Open
Abstract
Hesperetin (HSP), a flavonoid, has been validated to modify gene expression and function as an epigenetic agent to stop the development of breast carcinoma cells. HSP was investigated in this research to evaluate the expression of the MLH1 and MSH2 genes in cancerous breast cell lines (SKBR3) and healthy cell lines (MCF-11A) after exposure to different dosages (200, 400, and 600 µM/mL) of HSP. After 48 h of exposure, SKBR3's half-maximal inhibitory concentration was 289.6 µM/mL and MCF-10A's was 855.4 µM/mL. The research found that increasing HSP concentrations were closely correlated with an increase in MLH1 gene levels in the SKBR3 cell line, as shown by median and percentile values. HSP therapy caused the MLH1 gene expression to substantially vary in different groups, and in the SKBR3 cell line, MSH2 gene expressions were elevated in a dose-escalating manner. Moreover, HSP also raised the number of apoptotic cells, with the fraction of apoptotic cells escalating substantially at doses of 400 and 600 µM/mL. The outcomes suggested that HSP has the potential to be utilized as a therapeutic intervention for breast cancer, as it can induce apoptosis and reduce cell viability.
Collapse
Affiliation(s)
- Naser Hameed Saleh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Khorram E, Tabatabaiefar MA, Zeinalian M. Two Distinct Deleterious Causative Variants in a Family with Multiple Cancer-Affected Patients. Adv Biomed Res 2023; 12:203. [PMID: 37694253 PMCID: PMC10492615 DOI: 10.4103/abr.abr_366_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 09/12/2023] Open
Abstract
Background Only 5 to 10% of cancers are hereditary, but they are particularly important since they can be passed down from generation to generation, and family members are at elevated risk. Although screening methods are one of the essential strategies for dealing with hereditary cancers, they do not have high specificity and sensitivity. The emergence of whole-exome sequencing (WES) causes a significant increase in the diagnostic rate of cancer-causing variants in at-risk families. Materials and Methods We performed WES on the proband's DNA sample from an Iranian family with multiple cancer-affected members to identify potential causative variants. Multiple in silico tools were used to evaluate the candidate variants' pathogenicity and their effects on the protein's structure, function, and stability. Moreover, the candidate variants were co-segregated in the family with Sanger sequencing. Results The WES data analysis identified two pathogenic variants (CHEK2: NM_007194.4: c.538C>T, p.Arg180Cys and MLH1: NM_000249.4, c.844G>A, p.Ala282Thr). Sanger sequencing data showed each of the variants was incompletely segregated with phenotype, but both of them explained the patient's phenotype together. Also, the structural analysis demonstrated that due to the variant (c.538C>T), a salt bridge between arginine 180 and glutamic acid 149 was lost. Indeed, several protein stability tools described both variants as destabilizing. Conclusion Herein, we interestingly identify two distinct deleterious causative variants (CHEK2: NM_007194.4: c.538C>T, p.Arg180Cys and MLH1: NM_000249.4, c.844G>A, p.Ala282Thr) in a family with several cancer-affected members. Furthermore, this study's findings established the utility of WES in the genetic diagnostics of cancer.
Collapse
Affiliation(s)
- Erfan Khorram
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad A. Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
MLH1 intronic variants mapping to + 5 position of splice donor sites lead to deleterious effects on RNA splicing. Fam Cancer 2021; 19:323-336. [PMID: 32363481 DOI: 10.1007/s10689-020-00182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Germline pathogenic variants in the DNA mismatch repair genes (MMR): MLH1, MSH2, MSH6, and PMS2, are causative of Lynch syndrome (LS). However, many of the variants mapping outside the invariant splice site positions (IVS ± 1, IVS ± 2) are classified as variants of unknown significance (VUS). Three such variants (MLH1 c.588+5G>C, c.588+5G>T and c.677+5G>A) were identified in 8 unrelated LS families from Argentina, Brazil and Chile. Herein, we collected clinical information on these families and performed segregation analysis and RNA splicing studies to assess the implication of these VUS in LS etiology. Pedigrees showed a clear pattern of variant co-segregation with colorectal cancer and/or other LS-associated malignancies. Tumors presented deficient expression of MLH1-PMS2 proteins in 7/7 of the LS families, and MSI-high status in 3/3 cases. Moreover, RNA analyses revealed that c.588+5G>C and c.588+5G>T induce skipping of exon 7 whereas c.677+5G>A causes skipping of exon 8. In sum, we report that the combined clinical findings in the families and the molecular studies provided the evidences needed to demonstrate that the three MLH1 variants are causative of LS and to classify c.588+5G>C and c.677+5G>A as class 5 (pathogenic), and c.588+5G>T as class 4 (likely-pathogenic). Our findings underline the importance of performing clinical and family analyses, as well as RNA splicing assays in order to determine the clinical significance of intronic variants, and contribute to the genetic counseling and clinical management of patients and their relatives.
Collapse
|
6
|
Yang C, Sheehan M, Borras E, Cadoo K, Offit K, Zhang L. Characterization of a germline splice site variant MLH1 c.678-3T>A in a Lynch syndrome family. Fam Cancer 2021; 19:315-322. [PMID: 32356167 DOI: 10.1007/s10689-020-00180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Germline mutations in the DNA mismatch repair (MMR) genes cause Lynch syndrome. Classification and interpretation of intronic variants, especially those outside the consensus ± 1 ~ 2 splice sites are challenging as it is uncertain whether such variants would affect splicing accuracy and efficiency. The assessment of the pathogenicity of splice site variants in MLH1 is further complicated by the various isoforms due to alternative splicing. In this report, we describe a 42-year-old female with Lynch syndrome who carries a germline variant, MLH1 c.678-3T>A, in the splice acceptor site of intron 8. Functional studies and semiquantitative analysis demonstrated that this variant causes a significant increase in the transcripts with exon 9 or exon 9 and 10 deletions, which presumably leads to premature protein truncation or abnormal protein. In addition, we also observed MSI-H and loss of MLH1 by IHC in patient's tumor tissue. This variant also segregated with Lynch Syndrome related cancers in three affected family members. Based on these evidence, the MLH1 c.678-3T>A variant is considered pathogenic.
Collapse
Affiliation(s)
- Ciyu Yang
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Margaret Sheehan
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ester Borras
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Karen Cadoo
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kenneth Offit
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
To accelerate the Zika beat: Candidate design for RNA interference-based therapy. Virus Res 2018; 255:133-140. [DOI: 10.1016/j.virusres.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
8
|
Shirts BH, Konnick EQ, Upham S, Walsh T, Ranola JMO, Jacobson AL, King MC, Pearlman R, Hampel H, Pritchard CC. Using Somatic Mutations from Tumors to Classify Variants in Mismatch Repair Genes. Am J Hum Genet 2018; 103:19-29. [PMID: 29887214 DOI: 10.1016/j.ajhg.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 01/28/2023] Open
Abstract
Present guidelines for classification of constitutional variants do not incorporate inferences from mutations seen in tumors, even when these are associated with a specific molecular phenotype. When somatic mutations and constitutional mutations lead to the same molecular phenotype, as for the mismatch repair genes, information from somatic mutations may enable interpretation of previously unclassified variants. To test this idea, we first estimated likelihoods that somatic variants in MLH1, MSH2, MSH6, and PMS2 drive microsatellite instability and characteristic IHC staining patterns by calculating likelihoods of high versus low normalized variant read fractions of 153 mutations known to be pathogenic versus those of 760 intronic passenger mutations from 174 paired tumor-normal samples. Mutations that explained the tumor mismatch repair phenotype had likelihood ratio for high variant read fraction of 1.56 (95% CI 1.42-1.71) at sites with no loss of heterozygosity and of 26.5 (95% CI 13.2-53.0) at sites with loss of heterozygosity. Next, we applied these ratios to 165 missense, synonymous, and splice variants observed in tumors, combining in a Bayesian analysis the likelihood ratio corresponding with the adjusted variant read fraction with pretest probabilities derived from published analyses and public databases. We suggest classifications for 86 of 165 variants: 7 benign, 31 likely benign, 22 likely pathogenic, and 26 pathogenic. These results illustrate that for mismatch repair genes, characterization of tumor mutations permits tumor mutation data to inform constitutional variant classification. We suggest modifications to incorporate molecular phenotype in future variant classification guidelines.
Collapse
Affiliation(s)
- Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Eric Q Konnick
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Upham
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Angela L Jacobson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rachel Pearlman
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Heather Hampel
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Giulietti M, Occhipinti G, Principato G, Piva F. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell Oncol (Dordr) 2017; 40:181-192. [PMID: 28205147 DOI: 10.1007/s13402-017-0315-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal prognosis which is, among others, due to a lack of suitable biomarkers and therapeutic targets. Previously, basic gene expression analysis methods have been used for their identification, but recently new algorithms have been developed allowing more comprehensive data analyses. Among them, weighted gene co-expression network analysis (WGCNA) has already been applied to several cancer types with promising results. METHODS We applied WGCNA to miRNA expression data from PDAC patients. Specifically, we processed microarray-based expression data of 2555 miRNAs in serum from 100 PDAC patients and 150 healthy subjects. We identified network modules of co-expressed miRNAs in the healthy subject dataset and verified their preservation in the PDAC dataset. In the non-preserved modules, we selected key miRNAs and carried out functional enrichment analyses of their experimentally known target genes. Finally, we tested their prognostic significance using overall survival analyses. RESULTS Through WGCNA we identified several miRNAs that discriminate healthy subjects from PDAC patients and that, therefore, may play critical roles in PDAC development. At a functional level, we found that they regulate p53, FoxO and ErbB associated cellular signalling pathways, as well as cell cycle progression and various genes known to be involved in PDAC development. Some miRNAs were also found to serve as novel prognostic biomarkers, whereas others have previously already been proposed as such, thereby validating the WGCNA approach. In addition, we found that these novel data may explain at least some of our previous PDAC gene expression analysis results. CONCLUSIONS We identified several miRNAs critical for PDAC development using WGCNA. These miRNAs may serve as biomarkers for PDAC diagnosis/prognosis and patient stratification, and as putative novel therapeutic targets.
Collapse
Affiliation(s)
- M Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - F Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
10
|
Maccaroni E, Bracci R, Giampieri R, Bianchi F, Belvederesi L, Brugiati C, Pagliaretta S, Del Prete M, Scartozzi M, Cascinu S. Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal? Oncotarget 2016; 6:38737-48. [PMID: 26485756 PMCID: PMC4770733 DOI: 10.18632/oncotarget.5395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by germline mutations in MisMatch Repair (MMR) genes, particularly in MLH1, MSH2 and MSH6. Patients with LS seem to have a more favourable prognosis than those with sporadic CRC, although the prognostic impact of different mutation types is unknown. Aim of our study is to compare survival outcomes of different types of MMR mutations in patients with LS-related CRC. METHODS 302 CRC patients were prospectively selected on the basis of Amsterdam or Revised Bethesda criteria to undergo genetic testing: direct sequencing of DNA and MLPA were used to examine the entire MLH1, MSH2 and MSH6 coding sequence. Patients were classified as mutation-positive or negative according to the genetic testing result. RESULTS A deleterious MMR mutation was found in 38/302 patients. Median overall survival (OS) was significantly higher in mutation-positive vs mutation-negative patients (102.6 vs 77.7 months, HR:0.63, 95%CI:0.46-0.89, p = 0.0083). Different types of mutation were significantly related with OS: missense or splicing-site mutations were associated with better OS compared with rearrangement, frameshift or non-sense mutations (132.5 vs 82.5 months, HR:0.46, 95%CI:0.16-0.82, p = 0.0153). CONCLUSIONS Our study confirms improved OS for LS-patients compared with mutation-negative CRC patients. In addition, not all mutations could be considered equal: the better prognosis in CRC patients with MMR pathogenic missense or splicing site mutation could be due to different functional activity of the encoded MMR protein. This matter should be investigated by use of functional assays in the future.
Collapse
Affiliation(s)
- Elena Maccaroni
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Raffaella Bracci
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Riccardo Giampieri
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Francesca Bianchi
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Laura Belvederesi
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Cristiana Brugiati
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Silvia Pagliaretta
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Michela Del Prete
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Mario Scartozzi
- Medical Oncology, Azienda Ospedaliero-Universitaria di Cagliari, Monserrato (CA), Cagliari, Italy
| | - Stefano Cascinu
- Clinica di Oncologia Medica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
11
|
Schultz KAP, Harris A, Messinger Y, Sencer S, Baldinger S, Dehner LP, Hill DA. Ovarian tumors related to intronic mutations in DICER1: a report from the international ovarian and testicular stromal tumor registry. Fam Cancer 2016; 15:105-10. [PMID: 26289771 DOI: 10.1007/s10689-015-9831-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germline DICER1 mutations have been described in individuals with pleuropulmonary blastoma (PPB), ovarian Sertoli-Leydig cell tumor (SLCT), sarcomas, multinodular goiter, thyroid carcinoma, cystic nephroma and other neoplastic conditions. Early results from the International Ovarian and Testicular Stromal Tumor Registry show germline DICER1 mutations in 48 % of girls and women with SLCT. In this report, a young woman presented with ovarian undifferentiated sarcoma. Four years later, she presented with SLCT. She was successfully treated for both malignancies. Sequence results showed a germline intronic mutation in DICER1. This mutation results in an exact duplication of the six bases at the splice site at the intron 23 and exon 24 junction. Predicted improper splicing leads to inclusion of 10 bases of intronic sequence, frameshift and premature truncation of the protein disrupting the RNase IIIb domain. A second individual with SLCT was found to have an identical germline mutation. In each of the ovarian tumors, an additional somatic mutation in the RNase IIIb domain of DICER1 was found. In rare patients, germline intronic mutations in DICER1 that are predicted to cause incorrect splicing can also contribute to the pathogenesis of SLCT.
Collapse
Affiliation(s)
- Kris Ann P Schultz
- International Ovarian and Testicular Stromal Tumor Registry, Children's Hospital and Clinics of Minnesota, 2530 Chicago Ave. S. CSC-175, Minneapolis, MN, 55404, USA.
- International Pleuropulmonary Blastoma Registry, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA.
- Department of Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA.
| | - Anne Harris
- International Ovarian and Testicular Stromal Tumor Registry, Children's Hospital and Clinics of Minnesota, 2530 Chicago Ave. S. CSC-175, Minneapolis, MN, 55404, USA
- International Pleuropulmonary Blastoma Registry, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
- Department of Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Yoav Messinger
- International Ovarian and Testicular Stromal Tumor Registry, Children's Hospital and Clinics of Minnesota, 2530 Chicago Ave. S. CSC-175, Minneapolis, MN, 55404, USA
- International Pleuropulmonary Blastoma Registry, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
- Department of Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Susan Sencer
- Department of Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Shari Baldinger
- Virginia Piper Cancer Institute, Allina Health, Minneapolis, MN, USA
| | - Louis P Dehner
- Lauren V. Ackerman Division of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA
| | - D Ashley Hill
- Division of Anatomic Pathology and Center for Genetic Medicine Research, Children's National Medical Center, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
12
|
van der Klift HM, Jansen AML, van der Steenstraten N, Bik EC, Tops CMJ, Devilee P, Wijnen JT. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol Genet Genomic Med 2015; 3:327-45. [PMID: 26247049 PMCID: PMC4521968 DOI: 10.1002/mgg3.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants.
Collapse
Affiliation(s)
- Heleen M van der Klift
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Anne M L Jansen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands
| | | | - Elsa C Bik
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Pathology, Leiden University Medical Center Leiden, The Netherlands
| | - Juul T Wijnen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| |
Collapse
|
13
|
Vodicka P, Caja F, Vymetalkova V, Prochazka P, Vodickova L, Schwarzova L, Slyskova J, Kumar R, Schneiderova M. A novel c. 204 Ile68Met germline variant in exon 2 of the mutL homolog 1 gene in a colorectal cancer patient. Oncol Lett 2014; 9:183-186. [PMID: 25435955 PMCID: PMC4247117 DOI: 10.3892/ol.2014.2666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023] Open
Abstract
Mutations in the mutL homolog 1 (MLH1) gene are frequent in patients with hereditary non-polyposis colorectal cancer (CRC). The MLH1 gene was screened for mutations in patients with sporadic CRC. The nucleotide sequences for all 19 exons of MLH1 were analyzed by high resolution melting and sequenced in a group of 104 sporadic CRC patients, and the results were verified in a replication group of 1,095 patients and 1,469 controls. Different melting profiles for exon 2 of the MLH1 gene were observed in the germline DNA of one patient. Sequencing of the patient's DNA resulted in the identification of a heterozygous C>G variant at c.204, which resulted in an Ile68Met change in the amino acid. A detailed search of the National Center for Biotechnology Information and the 1000 Genomes databases indicated that the detected variant was unique. According to the SIFT and PolyPhen-2 algorithms, the substitution of Ile to Met was predicted to decrease the activity of the MLH1 protein. The newly identified, functional germline variant was not present in any other CRC patient or control. Thus, a novel germline variant in the MLH1 gene was identified, representing a rare event in sporadic CRC. The occurrence and relevance of this mutation in other types of cancer requires additional investigation.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic ; Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Fabian Caja
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic ; Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Pavel Prochazka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic ; Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic ; Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic ; Department of Toxicogenomics, National Institute of Public Health, Prague 10042, Czech Republic
| | - Lucie Schwarzova
- Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic ; Department of Molecular Genetics, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg 69121, Germany
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, Prague 12800, Czech Republic
| |
Collapse
|
14
|
Guillén-Ponce C, Molina-Garrido MJ, Carrato A. Follow-up recommendations and risk-reduction initiatives for Lynch syndrome. Expert Rev Anticancer Ther 2014; 12:1359-67. [DOI: 10.1586/era.12.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Gossage L, Murtaza M, Slatter AF, Lichtenstein CP, Warren A, Haynes B, Marass F, Roberts I, Shanahan SJ, Claas A, Dunham A, May AP, Rosenfeld N, Forshew T, Eisen T. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer 2014; 53:38-51. [PMID: 24166983 DOI: 10.1002/gcc.22116] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022] Open
Abstract
VHL is mutated in the majority of patients with clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent studies have identified recurrent mutations in histone modifying and chromatin remodeling genes, including BAP1, PBRM1, SETD2, KDM6A, and JARID1c. Current evidence suggests that BAP1 mutations are associated with aggressive disease. The clinical significance of the remaining genes is unknown. In this study, targeted sequencing of VHL and JARID1c (entire genes) and coding regions of BAP1, PBRM1, SETD2, and KDM6A was performed on 132 ccRCCs and matched normal tissues. Associations between mutations and clinical and pathological outcomes were interrogated. Inactivation of VHL (coding mutation or promoter methylation) was seen in 75% of ccRCCs. Somatic noncoding VHL alterations were identified in 29% of ccRCCs and may be associated with improved overall survival. BAP1 (11%), PBRM1 (33%), SETD2 (16%), JARID1c (4%), and KDM6A (3%) mutations were identified. BAP1-mutated tumors were associated with metastatic disease at presentation (P = 0.023), advanced clinical stage (P = 0.042) and a trend towards shorter recurrence free survival (P = 0.059) when compared with tumors exclusively mutated for PBRM1. Our results support those of recent publications pointing towards a role for BAP1 and PBRM1 mutations in risk stratifying ccRCCs. Further investigation of noncoding alterations in VHL is warranted.
Collapse
Affiliation(s)
- Lucy Gossage
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tanyi M, Olasz J, Tanyi JL, Tóth L, Antal-Szalmás P, Bubán T, András C, Urbancsek H, Garami Z, Csuka O, Damjanovich L. Q48P mutation in the hMLH1 gene associated with Lynch syndrome in three Hungarian families. Fam Cancer 2013; 11:519-24. [PMID: 22395473 DOI: 10.1007/s10689-012-9515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lynch syndrome (Hereditary nonpolyposis colorectal cancer, HNPCC) is an inherited disease with variable phenotype causing the development of colon cancer and other malignancies. The basis of the disease is believed to be the mismatch repair gene mutations. Genetic screening has been performed among the patients who have undergone surgery for colon cancer at the University of Debrecen, Department of Surgery. Tumor samples of the screened patients were submitted to immunohistochemistry on hMLH1, hMSH2 and hMSH6 genes, microsatellite instability testing, followed by sequencing and multiple ligation dependent probe amplification. Three families were identified with the missense mutation c.143A>C (p.Q48P) of hMLH1 gene. In one of the families a segregation analysis of this particular variant was also accomplished. The segregation analysis revealed a clear correlation between the tumor cases and the occurrence of this mutation. However, none of the analyzed 100 healthy controls demonstrated the same aberration. There is only one published evidence in the literature about the presence of this rare variant in any population. The Gln to Pro switch in the ATPase domain, a conservative region of the hMLH1 gene, creates significant changes in the protein structure. These results indicate that this mutation is the abnormality responsible for the patients' phenotype and it is feasible that this particular aberration occurs more frequently among Hungarian Lynch syndrome patients.
Collapse
Affiliation(s)
- Miklós Tanyi
- Department of Surgery, Medical and Health Science Centre, University of Debrecen, Móricz Zs. Krt. 22, 4032, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takahashi M, Furukawa Y, Shimodaira H, Sakayori M, Moriya T, Moriya Y, Nakamura Y, Ishioka C. Aberrant splicing caused by a MLH1 splice donor site mutation found in a young Japanese patient with Lynch syndrome. Fam Cancer 2013; 11:559-64. [PMID: 22766992 DOI: 10.1007/s10689-012-9547-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lynch syndrome, also known as hereditary non-polyposis colorectal cancer, characterized by predisposition to colorectal cancer and other associated cancers, is an autosomal-dominant disorder mainly caused by germline mutations in DNA mismatch repair (MMR) genes such as MLH1, MSH2, and MSH6. Some mutations that disrupt splice donor or acceptor sites cause aberrant mRNA splicing. These mutations are generally considered as pathogenic ones, however, it is sometimes uneasy to accurately predict their pathogenicity without functional assays, particularly when the mutation is a single nucleotide substitution. In this report, we describe a 25-year-old patient with Lynch syndrome who carries a germline variant in a splice donor site of the MLH1 gene (c.790 + 5 G > T), which was first detected among Asian populations. The immunohistochemical analysis revealed loss of MLH1 protein expression in the tumor. Our splicing assay confirmed that the intronic MLH1 variant actually caused aberrant splicing, supporting its pathogenic effect. Our data accumulate more information on the genotype-phenotype relationships in patients with Lynch syndrome.
Collapse
Affiliation(s)
- Masanobu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, and Tohoku University Hospital, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gulati S, Gustafson S, Daw HA. Lynch Syndrome Associated With PMS2 Mutation: Understanding Current Concepts. GASTROINTESTINAL CANCER RESEARCH : GCR 2011; 4:188-190. [PMID: 22295133 PMCID: PMC3269140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Shuchi Gulati
- Department of Internal Medicine The Reading Hospital and Medical Center West Reading, PA
| | | | - Hamed A. Daw
- Cleveland Clinic Cancer Center at Fairview Hospital Cleveland, OH
| |
Collapse
|