1
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and current research models of Mendelian tumor predisposition syndromes with ocular involvement. Prog Retin Eye Res 2025; 106:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a Mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 tumor predisposition syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Gutmann DH, Boehm JS, Karlsson EK, Padron E, Seshadri M, Wallis D, Snyder JC. Precision preclinical modeling to advance cancer treatment. J Natl Cancer Inst 2025; 117:586-594. [PMID: 39383197 PMCID: PMC11972679 DOI: 10.1093/jnci/djae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
A new era of cancer management is underway in which treatments are being developed for the entire continuum of the disease process. The availability of genetically engineered and naturally occurring preclinical models serves as instructive platforms for evaluating therapeutic mechanisms. However, a major clinical challenge is that the entire malignancy process occurs across multiple scales including genetic mutations, malignant changes in cell behavior, dysregulated tumor microenvironments, and systemic adaptations in the host. A multidisciplinary group of investigators coalesced at the National Cancer Institute Oncology Models Forum with the overall goal to provide updates on the use of precision preclinical models of cancer. The benefits and limitations of preclinical models were discussed to identify strategies for maximizing opportunities in modeling that could inform future cancer prevention and treatment approaches. Our shared perspective is that the continuum of single cell, multicell, organoid, and in situ models are remarkable resources for the clinical challenges ahead. We provide a roadmap for parsing already available models and include preliminary recommendations for the application of next-generation preclinical modeling in cancer intervention.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University, St Louis, MO 63110, United States
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joshua C Snyder
- Department of Surgery, Duke University, Durham, NC 27710, United States
| |
Collapse
|
3
|
Chatterjee J, Qi X, Mu R, Li X, Eligator T, Ouyang M, Bozeman SL, Rodgers R, Aggarwal S, Campbell DE, Schriefer LA, Baldridge MT, Gutmann DH. Intestinal Bacteroides drives glioma progression by regulating CD8+ T cell tumor infiltration. Neuro Oncol 2025:noaf024. [PMID: 39868555 DOI: 10.1093/neuonc/noaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression. METHODS Nf1-mutant mice genetically engineered to develop optic pathway gliomas (Nf1OPG mice) by 3 months of age were reared under germ-free (GF) conditions, treated with specific cocktails of antibiotics, or given fecal matter transplants (FMTs). Intestinal microbial species were identified by 16S genotyping. Neutralizing TGFβ antibodies were delivered systemically, while in vitro experiments used isolated murine microglia and T cells. Single cell RNA sequencing analysis was performed using established methods. RESULTS Nf1 OPG mice raised in a GF environment or postnatally treated with vancomycin did not harbor optic gliomas or exhibit OPG-induced retinal nerve fiber layer thinning, which was reversed following conventionally raised mouse FMT or colonization with Bacteroides species. Moreover, this intestinal microbiota-regulated gliomagenesis was mediated by circulating TGFβ, such that systemic TGFβ neutralization reduced Nf1-OPG growth. TGFβ was shown to act on tumor-associated monocytes to induce Ccl3 expression and recruit CD8+ T cells necessary for glioma growth. CONCLUSIONS Taken together, these findings establish, for the first time, a mechanistic relationship between Bacteroides in the intestinal microbiome and NF1-LGG pathobiology, suggesting both future predictive risk assessment strategies and therapeutic opportunities.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Xuanhe Qi
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Rui Mu
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Xuanwei Li
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Talia Eligator
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Megan Ouyang
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Stephanie L Bozeman
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Somya Aggarwal
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Danielle E Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Lawrence A Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| | - David H Gutmann
- Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA
| |
Collapse
|
4
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Kerashvili N, Gutmann DH. The management of neurofibromatosis type 1 (NF1) in children and adolescents. Expert Rev Neurother 2024; 24:409-420. [PMID: 38406862 DOI: 10.1080/14737175.2024.2324117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a rare neurogenetic disorder characterized by multiple organ system involvement and a predisposition to benign and malignant tumor development. With revised NF1 clinical criteria and the availability of germline genetic testing, there is now an opportunity to render an early diagnosis, expedite medical surveillance, and initiate treatment in a prompt and targeted manner. AREAS COVERED The authors review the spectrum of medical problems associated with NF1, focusing specifically on children and young adults. The age-dependent appearance of NF1-associated features is highlighted, and the currently accepted medical treatments are discussed. Additionally, future directions for optimizing the care of this unique population of children are outlined. EXPERT OPINION The appearance of NF1-related medical problems is age dependent, requiring surveillance for those features most likely to occur at any given age during childhood. As such, we advocate a life stage-focused screening approach beginning in infancy and continuing through the transition to adult care. With early detection, it becomes possible to promptly institute therapies and reduce patient morbidity. Importantly, with continued advancement in our understanding of disease pathogenesis, future improvements in the care of children with NF1 might incorporate improved risk assessments and more personalized molecularly targeted treatments.
Collapse
Affiliation(s)
- Nino Kerashvili
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Chatterjee J, Koleske JP, Chao A, Sauerbeck AD, Chen JK, Qi X, Ouyang M, Boggs LG, Idate R, Marco Y Marquez LI, Kummer TT, Gutmann DH. Brain injury drives optic glioma formation through neuron-glia signaling. Acta Neuropathol Commun 2024; 12:21. [PMID: 38308315 PMCID: PMC10837936 DOI: 10.1186/s40478-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1β release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1β or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Astoria Chao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Megan Ouyang
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lucy G Boggs
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Rujuta Idate
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lara Isabel Marco Y Marquez
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Terrence T Kummer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Cordell EC, Alghamri MS, Castro MG, Gutmann DH. T lymphocytes as dynamic regulators of glioma pathobiology. Neuro Oncol 2022; 24:1647-1657. [PMID: 35325210 PMCID: PMC9527522 DOI: 10.1093/neuonc/noac055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The brain tumor microenvironment contains numerous distinct types of nonneoplastic cells, which each serve a diverse set of roles relevant to the formation, maintenance, and progression of these central nervous system cancers. While varying in frequencies, monocytes (macrophages, microglia, and myeloid-derived suppressor cells), dendritic cells, natural killer cells, and T lymphocytes represent the most common nonneoplastic cellular constituents in low- and high-grade gliomas (astrocytomas). Although T cells are conventionally thought to target and eliminate neoplastic cells, T cells also exist in other states, characterized by tolerance, ignorance, anergy, and exhaustion. In addition, T cells can function as drivers of brain cancer growth, especially in low-grade gliomas. Since T cells originate in the blood and bone marrow sinuses, their capacity to function as both positive and negative regulators of glioma growth has ignited renewed interest in their deployment as immunotherapeutic agents. In this review, we discuss the roles of T cells in low- and high-grade glioma formation and progression, as well as the potential uses of modified T lymphocytes for brain cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Gutmann
- Corresponding Author: David H. Gutmann, MD, PhD, Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA ()
| |
Collapse
|
9
|
Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun 2021; 12:7122. [PMID: 34880260 PMCID: PMC8654836 DOI: 10.1038/s41467-021-27455-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
To elucidate the mechanisms underlying the reduced incidence of brain tumors in children with Neurofibromatosis type 1 (NF1) and asthma, we leverage Nf1 optic pathway glioma (Nf1OPG) mice, human and mouse RNAseq data, and two different experimental asthma models. Following ovalbumin or house dust mite asthma induction at 4-6 weeks of age (WOA), Nf1OPG mouse optic nerve volumes and proliferation are decreased at 12 and 24 WOA, indicating no tumor development. This inhibition is accompanied by reduced expression of the microglia-produced optic glioma mitogen, Ccl5. Human and murine T cell transcriptome analyses reveal that inhibition of microglia Ccl5 production results from increased T cell expression of decorin, which blocks Ccl4-mediated microglia Ccl5 expression through reduced microglia NFκB signaling. Decorin or NFκB inhibitor treatment of Nf1OPG mice at 4-6 WOA inhibits tumor formation at 12 WOA, thus establishing a potential mechanistic etiology for the attenuated glioma incidence observed in children with asthma.
Collapse
|
10
|
Fereidouni M, Ferns GA, Bahrami A. Current status and perspectives regarding the association between allergic disorders and cancer. IUBMB Life 2020; 72:1322-1339. [PMID: 32458542 DOI: 10.1002/iub.2285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
While activation of immune system may lead to a lower risk of some diseases, it has been shown that a history of atopic allergic disorders such as asthma, hay fever, eczema, and food allergies could be related to several types of cancer. However, the evidence is not entirely conclusive. Two proposals suggest a possible mechanism for the association between allergic disorders and cancers: immune surveillance and the antigenic stimulation. The association of allergy and cancer may vary by cancer site and the type of exposure. The aim of current review was to summarize the current knowledge of the association between allergic diseases and the risk of cancers with particular emphasis on case-controls and cohort studies to estimate the cancer risk associated with allergy.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Department of Immunology, Medical school Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Wright-Jin EC, Gutmann DH. Microglia as Dynamic Cellular Mediators of Brain Function. Trends Mol Med 2019; 25:967-979. [PMID: 31597593 DOI: 10.1016/j.molmed.2019.08.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
Originally hypothesized to function solely as immunologic responders within the central nervous system (CNS), emerging evidence has revealed that microglia have more complex roles in normal brain development and in the context of disease. In health, microglia influence neural progenitor fate decisions, astrocyte activation, neuronal homeostasis, and synaptogenesis. In the setting of brain disease, including autism, brain tumors, and neurodegenerative disorders, microglia undergo substantial morphological, molecular, and functional changes, which establish new biological states relevant to disease pathogenesis and progression. In this review, we discuss the function of microglia in health and disease and outline a conceptual framework for elucidating their specific contributions to nervous system pathobiology.
Collapse
Affiliation(s)
- Elizabeth C Wright-Jin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common brain tumor predisposition syndromes, in which affected children are prone to the development of low-grade gliomas. While NF1-associated gliomas can be found in several brain regions, the majority arise in the optic nerves, chiasm, tracts, and radiations (optic pathway gliomas; OPGs). Owing to their location, 35-50% of affected children present with reduced visual acuity. Unfortunately, despite tumor stabilization following chemotherapy, vision does not improve in most children. For this reasons, more effective therapies are being sought that reflect a deeper understanding of the NF1 gene and the use of authenticated Nf1 genetically-engineered mouse strains. The implementation of these models for drug discovery and validation has galvanized molecularly-targeted clinical trials in children with NF1-OPG. Future research focused on defining the cellular and molecular factors that underlie optic glioma development and progression also has the potential to provide personalized risk assessment strategies for this pediatric population.
Collapse
Affiliation(s)
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
14
|
Ricker CA, Pan Y, Gutmann DH, Keller C. Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Front Oncol 2016; 6:259. [PMID: 28066715 PMCID: PMC5167692 DOI: 10.3389/fonc.2016.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that results from germline mutations of the NF1 gene, creating a predisposition to low-grade gliomas (LGGs; pilocytic astrocytoma) in young children. Insufficient data and resources represent major challenges to identifying the best possible drug therapies for children with this tumor. Herein, we summarize the currently available cell lines, genetically engineered mouse models, and therapeutic targets for these LGGs. Conspicuously absent are human tumor-derived cell lines or patient-derived xenograft models for NF1-LGG. New collaborative initiatives between patients and their families, research groups, and pharmaceutical companies are needed to create transformative resources and broaden the knowledge base relevant to identifying cooperating genetic drivers and possible drug therapeutics for this common pediatric brain tumor.
Collapse
Affiliation(s)
- Cora A Ricker
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| | - Yuan Pan
- Washington University School of Medicine , St. Louis, MO , USA
| | - David H Gutmann
- Washington University School of Medicine , St. Louis, MO , USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| |
Collapse
|