1
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Sethi S, Chourasia D, Parhar IS. Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci 2016; 40:607-27. [PMID: 26333406 DOI: 10.1007/s12038-015-9537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.
Collapse
Affiliation(s)
- Sumit Sethi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Selangor Darul Ehsan, Malaysia,
| | | | | |
Collapse
|
3
|
Pasquier J, Lafont AG, Jeng SR, Morini M, Dirks R, van den Thillart G, Tomkiewicz J, Tostivint H, Chang CF, Rousseau K, Dufour S. Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family. PLoS One 2012. [PMID: 23185286 PMCID: PMC3502363 DOI: 10.1371/journal.pone.0048931] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs). We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4) based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R) in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R) on the number of Kissr paralogs in current teleosts.
Collapse
Affiliation(s)
- Jérémy Pasquier
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Shan-Ru Jeng
- National Kaohsiung Marine University, Department of Aquaculture, Kaohsiung, Taiwan
| | - Marina Morini
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Ron Dirks
- Leiden University, ZF-screens B.V. and Institute of Biology, Leiden, The Netherlands
| | | | - Jonna Tomkiewicz
- Technical University of Denmark, National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, UMR 7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Paris, France
| | - Ching-Fong Chang
- National Taiwan Ocean University, Department of Aquaculture and Center of Excellence for Marine Bioenvironment and Biotechnology, Keelung, Taiwan
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208- IRD207- UPMC, Paris, France
- * E-mail:
| |
Collapse
|
4
|
Gottsch ML, Popa SM, Lawhorn JK, Qiu J, Tonsfeldt KJ, Bosch MA, Kelly MJ, Rønnekleiv OK, Sanz E, McKnight GS, Clifton DK, Palmiter RD, Steiner RA. Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 2011; 152:4298-309. [PMID: 21933870 PMCID: PMC3199004 DOI: 10.1210/en.2011-1521] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein. The pattern of GFP expression in the brain of the knockin recapitulates what has been described earlier for Kiss1 in the male and female mouse, with prominent expression in the arcuate nucleus (ARC) (in both sexes) and the anteroventral periventricular nucleus (in females). Single-cell RT-PCR showed that the Kiss1 transcript is expressed in 100% of GFP-labeled cells, and the CreGFP transcript was regulated by estradiol in the same manner as the Kiss1 gene (i.e. inhibited in the ARC and induced in the anteroventral periventricular nucleus). We used this mouse to evaluate the biophysical properties of kisspeptin (Kiss1) neurons in the ARC of the female mouse. GFP-expressing Kiss1 neurons were identified in hypothalamic slice preparations of the ARC and patch clamped. Whole-cell (and loose attached) recordings revealed that Kiss1 neurons exhibit spontaneous activity and expressed both h- (pacemaker) and T-type calcium currents, and hyperpolarization-activated cyclic nucleotide-regulated 1-4 and CaV3.1 channel subtypes (measured by single cell RT-PCR), respectively. N-methyl-D-aspartate induced bursting activity, characterized by depolarizing/hyperpolarizing oscillations. Therefore, Kiss1 neurons in the ARC share molecular and electrophysiological properties of other CNS pacemaker neurons.
Collapse
Affiliation(s)
- Michelle L Gottsch
- Department of Obstetrics and Gynecology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195-7290, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mechaly AS, Viñas J, Piferrer F. Identification of two isoforms of the Kisspeptin-1 receptor (kiss1r) generated by alternative splicing in a modern teleost, the Senegalese sole (Solea senegalensis). Biol Reprod 2008; 80:60-9. [PMID: 18815354 DOI: 10.1095/biolreprod.108.072173] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The KISSPEPTIN-1 receptor (KISS1R) and its ligands (KISSPEPTINS) are implicated in the regulation of the onset of puberty. We report the coding region and genomic structure of the kiss1r gene of a modern teleost, the Senegalese sole (Ss). Ss kiss1r cDNA contained an opening frame of 1137 bp, which results in a predicted 378 amino acid protein. Searching genomic databases allowed the identification of kiss1r orthologues in six new species belonging to three vertebrate groups and established the evolutionary relationships of all KISS1R sequences available to date. Analysis of Ss kiss1r revealed for the first time in any vertebrate KISS1R gene the presence of features that are characteristic of a mechanism of alternative splicing. This was confirmed by the identification of two transcripts, Ss kiss1r_v1 and Ss kiss1r_v2. The latter, arising from intron III retention, contained a 27 codons insert in transmembrane region 4 with two stop codons, suggesting it may lead to a truncated protein. The mRNA of the two variants was differently expressed in several tissues. In the brain, levels of the Ss kiss1r_v1 were higher than those of Ss kiss1r_v2. In the gonads, the opposite was observed. Both isoforms exhibited changes depending on sex and maturity stage. The presence of two variants may help to explain some discrepancies observed in past studies regarding KISS1R expression during puberty. Thus, the existence of alternative splicing for the KISS1R gene may contribute to our understanding of the many physiological functions suspected to be mediated by KISSPEPTIN-KISS1R signaling.
Collapse
Affiliation(s)
- Alejandro S Mechaly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
6
|
Abstract
KISS-1 gene and its receptor gene GPR54 play key roles in the initiation of puberty onset. The peptide product of the KiSS-1 gene, Kisspeptins stimulate gonadotrophins release to initiate puberty through the expression of GPR54 gene in the brain. So the level of KISS-1 and GPR54 mRNA in hypothalamus was very high on the onset of puberty. The expression of KISS-1gene was regulated by steroid hormone in different nuclei within the forebrain to control the reproduction in puberty. Loss of function mutations of GPR54 gene could cause idiopathic hypogonadotropic hypogonadism (IHH) and gonadotrophin-dependant premature puberty. This review also introduced the structure, expression, homology comparison, polymorphism of KISS-1 and GPR54 genes and their interrelation with other regulators of reproduction.
Collapse
|