1
|
Hasan MM, Arafah P, Ozawa H, Ushio H, Ochiai Y. Thermal denaturation and autoxidation profiles of carangid fish myoglobins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:487-498. [PMID: 33515395 DOI: 10.1007/s10695-021-00928-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Although myoglobin (Mb) has been considered to be one of the well-characterized proteins, screening of post-genomic era databases revealed the lack of adequate information on teleost Mbs. The present study was aimed to investigate stability and functional features of Mbs from three teleosts of the same family. To unfold how primary structure influences the stability and function of proteins, Mbs were purified from the dark muscles of three carangids, namely, yellowtail, greater amberjack, and silver trevally. Thermostabilities measured by circular dichroism (CD) spectrometry revealed species-specific thermal denaturation pattern, i.e., silver trevally > yellowtail > greater amberjack Mbs. On the other hand, autoxidation rate constants of the ferrous forms of those three carangid Mbs showed positive correlation between the ferrous state of the heme iron and rising temperature. The order of autoxidation rate was in the order of greater amberjack > yellowtail > silver trevally Mbs. The finding of the present study denotes that the thermal stability is not necessarily correlated with the functional stability of carangid Mbs even though their primary structures shared high homology (84-94%).
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Purnama Arafah
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hideo Ozawa
- Faculty of Applied Bioscience, Kanagawa Institute of Technology, Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Hideki Ushio
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
2
|
Nurilmala M, Ochiai Y. Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1407-1416. [PMID: 27126585 DOI: 10.1007/s10695-016-0228-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The primary structure of southern bluefin tuna Thunnus maccoyii Mb has been elucidated by molecular cloning techniques. The cDNA of this tuna encoding Mb contained 776 nucleotides, with an open reading frame of 444 nucleotides encoding 147 amino acids. The nucleotide sequence of the coding region was identical to those of other bluefin tunas (T. thynnus and T. orientalis), thus giving the same amino acid sequences. Based on the deduced amino acid sequence, bioinformatic analysis was performed including phylogenic tree, hydropathy plot and homology modeling. In order to investigate the autoxidation profiles, the isolation of Mb was performed from the dark muscle. The water soluble fraction was subjected to ammonium sulfate fractionation (60-90 % saturation) followed by preparative gel electrophoresis. Autoxidation profiles of Mb were delineated at pH 5.6, 6.5 and 7.4 at temperature 37 °C. The autoxidation rate of tuna Mb was slightly higher than that of horse Mb at all pH examined. These results revealed that tuna myoglobin was unstable than that of horse Mb mainly at acidic pH.
Collapse
Affiliation(s)
- Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, Indonesia.
| | - Yoshihiro Ochiai
- Laboratory of Aquatic Bioresource Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| |
Collapse
|
3
|
Feng JB, Liu SK, Wang RJ, Zhang JR, Wang XL, Kaltenboeck L, Li JL, Liu ZJ. Molecular characterization, phylogenetic analysis and expression profiling of myoglobin and cytoglobin genes in response to heat stress in channel catfish Ictalurus punctatus. JOURNAL OF FISH BIOLOGY 2015; 86:592-604. [PMID: 25604925 DOI: 10.1111/jfb.12584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
To understand the function of myoglobin (Mb) and cytoglobin (Cygb) in channel catfish Ictalurus punctatus in response to heat stress, mb and cygb genes were identified and characterized in this study. These genes were widely expressed in all the tested tissues, but strong tissue preferences were observed, with the mb gene being expressed most highly in the heart, cygb1 most highly expressed in the intestine and cygb2 most highly expressed in the brain. After heat-stress challenge, mb and cygb genes were up-regulated in almost all tested tissues. In general, such up-regulation was more dramatic in the tolerant group than in the intolerant group, suggesting that higher expression of mb and cygb genes contributed to greater tolerance of I. punctatus to heat stress.
Collapse
Affiliation(s)
- J B Feng
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - S K Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - R J Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J R Zhang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - X L Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - L Kaltenboeck
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J L Li
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Z J Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
4
|
Kobayashi G, Mizuguchi T, Matsuoka A. Isolation and autoxidation profile of fish myoglobin from hoki (Macruronus magellanicus). Fukushima J Med Sci 2014; 60:31-4. [PMID: 25030718 DOI: 10.5387/fms.2014-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myoglobin is known to be present exclusively in cardiac and red skeletal muscles, but not in white skeletal muscles. Thus, to date, only a few studies on myoglobin from fish species with white flesh have been reported. For comparative examination, we directly isolated myoglobin from cardiac muscle of hoki (Macruronus magellanicus), one of the most important commercial fish species with white muscle. The ferrous myoglobin was separated from its ferric met-form by anion exchange column chromatography. The absorption spectra of hoki myoglobin were similar to those of bigeye tuna skeletal myoglobin, in both oxy- and met-forms. However, hoki oxymyoglobin was found to be susceptible to autoxidation in 0.1 M buffer (pH 7.2) at 25°C, with its rate being more than 3 times higher than that of bigeye tuna oxymyoglobin.
Collapse
|