1
|
Soldatov AA, Shalagina NE, Rychkova VN, Kukhareva TA. Membrane-Bound Ferric Hemoglobin in Nucleated Erythrocytes of the Black Scorpionfish Scorpaena porcus, Linnaeus 1758. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 516:50-54. [PMID: 38700814 DOI: 10.1134/s0012496624700984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024]
Abstract
The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.
Collapse
Affiliation(s)
- A A Soldatov
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia.
- Sevastopol State University, Sevastopol, Russia.
| | - N E Shalagina
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| | - V N Rychkova
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| | - T A Kukhareva
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| |
Collapse
|
2
|
Ghirmai S, Krona A, Wu H, Whalin J, Axelsson M, Undeland I. Relationship between hemolysis and lipid oxidation in red blood cell-spiked fish muscle; dependance on pH and blood plasma. Sci Rep 2024; 14:1943. [PMID: 38253742 PMCID: PMC10803305 DOI: 10.1038/s41598-024-52090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The relationship between hemolysis and lipid oxidation was explored in red blood cell (RBCs)-spiked washed cod mince (WCM). At pH 6.8 and 3 ± 1 °C, intact RBCs (71 µM Hb) delayed lipid oxidation by 1 day compared to WCM with partly or fully lysed RBCs which oxidized immediately. Intact RBCs also lowered peak peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) with up to 59.5% and 48.1%, respectively. Adding 3% (v/w) blood plasma to RBC-spiked WCM delayed the lipid oxidation onset from 1 to 3-4 days without delaying hemolysis. At pH 6.4 the oxidation onset in RBC-WCM was the same as for pH 6.8 while at pH 7.2-7.6 lipid oxidation was suppressed for 7 days. Micrographs revealed RBC-lysis from day 2 at pH 6.4 but at pH 7.6, RBC stayed intact for ≥ 7 days. Thus, assuring presence of plasma-derived antioxidants and/or elevating muscle pH to avoid hemolysis can aid valorization of blood rich underutilized fish raw materials.
Collapse
Affiliation(s)
- Semhar Ghirmai
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Annika Krona
- Division Bioeconomy and Health, Department Agriculture and Food, RISE Research Institutes of Sweden, Frans Perssons Väg 6, 402 29, Gothenburg, Sweden
| | - Haizhou Wu
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - James Whalin
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, Gothenburg University, Medicinaregatan 18a, 413 90, Gothenburg, Sweden
| | - Ingrid Undeland
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
3
|
Ghirmai S, Wu H, Axelsson M, Matsuhira T, Sakai H, Undeland I. Exploring how plasma- and muscle-related parameters affect trout hemolysis as a route to prevent hemoglobin-mediated lipid oxidation of fish muscle. Sci Rep 2022; 12:13446. [PMID: 35927386 PMCID: PMC9352706 DOI: 10.1038/s41598-022-16363-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Hemoglobin (Hb) is a powerful promoter of lipid oxidation, particularly in muscle of small pelagic fish species and fish by-products, both having high Hb-levels and highly unsaturated lipids. As Hb is located within the red blood cells (RBCs) it is here hypothesized that the perishable polyunsaturated fatty acids (PUFAs) can be protected from oxidation by limiting hemolysis during early fish processing. Using a model system consisting of washed-resuspended trout (Oncorhynchus mykiss) RBCs (wr-RBCs), the aim of this study was to evaluate how RBC lysis under cold storage was affected by selected parameters linked to blood or muscle: bacterial growth, energy status, pH, RBC membrane lipid oxidation and colloidal osmotic pressure (COP). The results indicated that bacterial growth had a modest effect on hemolysis while pH-values typical for post mortem fish muscle (6.4–6.8), and absence of glucose or albumin stimulated hemolysis. The rapid hemolysis observed at pH 6.4–6.8 correlated with lipid oxidation of the RBC membrane, while the lower hemolysis at pH 7.2–8.0 occurred with low, or without any RBC membrane lipid oxidation. When hemin was added to the RBCs at pH 6.8 hemolysis was induced without parallel RBC membrane oxidation, pointing at Hb-autoxidation and hemin-release per se as important events triggering lysis in fish muscle. Altogether, the study provided valuable findings which ultimately can aid development of new tools to combat lipid oxidation in post mortem fish muscle by limiting hemolysis.
Collapse
Affiliation(s)
- Semhar Ghirmai
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Haizhou Wu
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, Gothenburg University, Medicinaregatan 18a, 413 90, Gothenburg, Sweden
| | - Takashi Matsuhira
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Ingrid Undeland
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
4
|
Mahgoup EM, Khaleel SA, El-Mahdy MA, Abd-Allah AR, Zweier JL. Role of cytoglobin in cigarette smoke constituent-induced loss of nitric oxide bioavailability in vascular smooth muscle cells. Nitric Oxide 2022; 119:9-18. [PMID: 34875385 PMCID: PMC8752519 DOI: 10.1016/j.niox.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Bampidis V, Cottrill B, Frutos MJ, Furst P, Parker A, Binaglia M, Christodoulidou A, Gergelova P, Guajardo IM, Wenger C, Hogstrand C. Risk assessment of nitrate and nitrite in feed. EFSA J 2020; 18:e06290. [PMID: 33173543 PMCID: PMC7610142 DOI: 10.2903/j.efsa.2020.6290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks to animal health related to nitrite and nitrate in feed. For nitrate ion, the EFSA Panel on Contaminants in the Food Chain (CONTAM Panel) identified a BMDL 10 of 64 mg nitrate/kg body weight (bw) per day for adult cattle, based on methaemoglobin (MetHb) levels in animal's blood that would not induce clinical signs of hypoxia. The BMDL 10 is applicable to all bovines, except for pregnant cows in which reproductive effects were not clearly associated with MetHb formation. Since the data available suggested that ovines and caprines are not more sensitive than bovines, the BMDL 10 could also be applied to these species. Highest mean exposure estimates of 53 and 60 mg nitrate/kg bw per day in grass silage-based diets for beef cattle and fattening goats, respectively, may raise a health concern for ruminants when compared with the BMDL 10 of 64 mg nitrate/kg bw per day. The concern may be higher because other forages might contain higher levels of nitrate. Highest mean exposure estimates of 2.0 mg nitrate/kg bw per day in pigs' feeds indicate a low risk for adverse health effects, when compared with an identified no observed adverse effect level (NOAEL) of 410 mg nitrate/kg bw per day, although the levels of exposure might be underestimated due to the absence of data on certain key ingredients in the diets of this species. Due to the limitations of the data available, the CONTAM Panel could not characterise the health risk in species other than ruminants and pigs from nitrate and in all livestock and companion animals from nitrite. Based on a limited data set, both the transfer of nitrate and nitrite from feed to food products of animal origin and the nitrate- and nitrite-mediated formation of N-nitrosamines and their transfer into these products are likely to be negligible.
Collapse
|
6
|
Amdahl MB, Petersen EE, Bocian K, Kaliszuk SJ, DeMartino AW, Tiwari S, Sparacino-Watkins CE, Corti P, Rose JJ, Gladwin MT, Fago A, Tejero J. The Zebrafish Cytochrome b5/Cytochrome b5 Reductase/NADH System Efficiently Reduces Cytoglobins 1 and 2: Conserved Activity of Cytochrome b5/Cytochrome b5 Reductases during Vertebrate Evolution. Biochemistry 2019; 58:3212-3223. [PMID: 31257865 DOI: 10.1021/acs.biochem.9b00406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytoglobin is a heme protein evolutionarily related to hemoglobin and myoglobin. Cytoglobin is expressed ubiquitously in mammalian tissues; however, its physiological functions are yet unclear. Phylogenetic analyses indicate that the cytoglobin gene is highly conserved in vertebrate clades, from fish to reptiles, amphibians, birds, and mammals. Most proposed roles for cytoglobin require the maintenance of a pool of reduced cytoglobin (FeII). We have shown previously that the human cytochrome b5/cytochrome b5 reductase system, considered a quintessential hemoglobin/myoglobin reductant, can reduce human and zebrafish cytoglobins ≤250-fold faster than human hemoglobin or myoglobin. It was unclear whether this reduction of zebrafish cytoglobins by mammalian proteins indicates a conserved pathway through vertebrate evolution. Here, we report the reduction of zebrafish cytoglobins 1 and 2 by the zebrafish cytochrome b5 reductase and the two zebrafish cytochrome b5 isoforms. In addition, the reducing system also supports reduction of Globin X, a conserved globin in fish and amphibians. Indeed, the zebrafish reducing system can maintain a fully reduced pool for both cytoglobins, and both cytochrome b5 isoforms can support this process. We determined the P50 for oxygen to be 0.5 Torr for cytoglobin 1 and 4.4 Torr for cytoglobin 2 at 25 °C. Thus, even at low oxygen tensions, the reduced cytoglobins may exist in a predominant oxygen-bound form. Under these conditions, the cytochrome b5/cytochrome b5 reductase system can support a conserved role for cytoglobins through evolution, providing electrons for redox signaling reactions such as nitric oxide dioxygenation, nitrite reduction, and phospholipid oxidation.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Elin E Petersen
- Department of Bioscience , Aarhus University , DK-8000 Aarhus C, Denmark
| | - Kaitlin Bocian
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Stefan J Kaliszuk
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Sagarika Tiwari
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jason J Rose
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Angela Fago
- Department of Bioscience , Aarhus University , DK-8000 Aarhus C, Denmark
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Division of Pulmonary, Allergy and Critical Care Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Pharmacology and Chemical Biology , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
7
|
Jensen FB, Nielsen K. Methemoglobin reductase activity in intact fish red blood cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:14-19. [DOI: 10.1016/j.cbpa.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/25/2023]
|
8
|
Gam LTH, Jensen FB, Damsgaard C, Huong DTT, Phuong NT, Bayley M. Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:9-17. [PMID: 28351760 DOI: 10.1016/j.aquatox.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
The clown knifefish is a facultative air breather, which is widely farmed in freshwater ponds in Vietnam. Here we report a very high nitrite tolerance (96h LC50 of 7.82mM) in this species and examine the effects of 1mM (LC5) and 2.5mM (LC10) ambient nitrite on haemoglobin (Hb) derivatives, electrolyte levels, acid-base status, and total body water content during 7days of exposure. Furthermore, we tested the hypothesis that erythrocyte methaemoglobin (metHb) reductase activity is upregulated by nitrite exposure. Plasma nitrite levels increased for 2-3days but stayed below environmental levels and fell towards control values during the last half of the exposure period. Plasma nitrate, in contrast, rose continuously, reflecting detoxification of nitrite to nitrate. MetHb generated from the reaction between nitrite and erythrocyte Hb reached 38% at day 2, but then decreased to 17% by the end of experiment. The first order rate constant for metHb reduction by erythrocyte metHb reductase increased from 0.01 in controls to 0.046min-1 after 6days of nitrite exposure, showing up-regulation of this enzyme. While such upregulation has been suggested in nitrite-exposed fish species, this study provides the first experimental evidence.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Holowiecki A, O'Shields B, Jenny MJ. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures. Toxicol Appl Pharmacol 2016; 311:74-87. [PMID: 27671773 DOI: 10.1016/j.taap.2016.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023]
Abstract
While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96h cadmium exposure (20μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs.
Collapse
Affiliation(s)
- Andrew Holowiecki
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Britton O'Shields
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|