1
|
Song F, Ye H, Shi L, Ouyang D, Sun J, Luo J. Characterization and functional analysis of myostatin and myogenin genes involved in temperature variation and starvation stress in Golden pompano, Trachinotus blochii. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111183. [PMID: 35247591 DOI: 10.1016/j.cbpa.2022.111183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023]
Abstract
Animal growth and development is a complicated process and is regulated by multi-genes. Myostatin (Mstn) and myogenin (Myog) are a pair of negative and positive regulators respectively, which play an important role in the generation of muscle cells. In order to study the function of these two genes in muscle growth of Trachinotus blochii, full lengths of two mstn genes (mstn-1 and mstn-2) and myog gene were cloned using RACE. We first identified and characterized the complete cDNA sequences of mstn-1, mstn-2, and myog genes derived from T. blochii, an economically important mariculture species in China. Multiple sequence alignment of amino acids and phylogenetic analysis revealed that the Mstn and Myog were highly conserved to the other Perciformes. In addition, gene duplication of mstn in T. blochii was observed. mstn-1 mRNA was mainly expressed in the muscle and gonad, while mstn-2 and myog transcripts were detectable mainly in the brain and muscle, respectively. Moreover, the nutritional status and temperature influenced abundance levels in brain and muscle. Results suggested that mstn and myog genes play an important role in muscle growth of T. blochii, mstn may not be limited to control of muscle growth in fish and could also be involved in other biological functions.
Collapse
Affiliation(s)
- Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Liping Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Dongdong Ouyang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Lou Z, Zhao Y, Zhang Y, Zheng B, Feng H, Hosain MA, Xue L. MiR-2014-5p and miR-1231-5p regulate muscle growth of Larimichthys crocea by targeting MSTN gene. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110535. [PMID: 33186699 DOI: 10.1016/j.cbpb.2020.110535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression, and myostatin (MSTN) has been widely recognized as a key gene for muscle growth and development. Through high-throughput sequencing to study the effects of starvation on miRNA transcriptomes in Larimichthys crocea muscle tissue, we found that the expression of miR-2014, miR-1231 and miR-1470 were significantly different between fasting and normal feeding Larimichthys crocea. Bioinformatics analysis predicted that miR-2014, miR-1231 and miR-1470 target MSTN mRNA 3'UTR. To verify the accuracy of predictions, we constructed double luciferase plasmids containing MSTN 3'UTR and confirmed that miR-2014-5p and miR-1231-5p can inhibit MSTN expression by targeting MSTN 3'UTR using double luciferase experiments, while miR-1470 is not involved in regulation. Subsequent site-directed mutation experiments reflected the specificity of the target sequence. In addition, quantitative PCR experiments revealed that miR-2014-5p and miR-1231-5p may participate in the regulation of MSTN expression in fasting and refeeding period, respectively. These results implied that miRNA may take part in muscle growth regulation during starvation. It provides some insights into the molecular regulation mechanism of MSTN in response to starvation stress in fish.
Collapse
Affiliation(s)
- Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yayun Zhao
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yu Zhang
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Wu L, Li Y, Xu Y, Wang L, Ma X, Dong C, Zhao X, Tian X, Li X, Kong X. The roles of two myostatins and immune effects after inhibition in Qi river crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2020; 98:710-719. [PMID: 31707005 DOI: 10.1016/j.fsi.2019.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Myostatin, through type I receptor (kinase 4, 5, ALK4/5), functions to participate in the immune system and negatively regulate muscle growth in mammals. However, the role of myostatin (mstn) in the immune system of teleosts is largely unknown. In a previous study, we cloned the mstn1 cDNA encoding myostatin in Qi river crucian carp (Carassius auratus). In the present study, we have cloned mstn2 cDNA, which was characterized and analyzed together with mstn1. Tissue distribution analysis showed that both mstn genes are expressed in numerous tissues, with mstn1 dominantly expressed in the muscle and brain, whereas mstn2 is mainly expressed in the brain. During embryogenesis, mstn1 and mstn2 exhibit different expression patterns. Both mstn1 and mstn2 expression increased stepwise in the brain at different developmental stages. Furthermore, both genes are differentially regulated during different periods of fasting/re-feeding. Following the exposure of C. auratus to polyI:C, lipopolysaccharide (LPS), and Aeromonas hydrophila, both genes were upregulated in different tissues, which indicated that they might be involved in the immune response against pathogenic invasion. Blocking the Mstn signal pathway with SB-431542 (a chemical inhibitor of ALK4/5) resulted in significantly increased body length and weight. However, the mortality of SB-431542-treated fish was higher after A. hydrophila challenge. Moreover, decreased expression of lysozymes (lyz), complement component 3 (c3), β-defensin 3 (defb3), and interferon γ (ifnγ) were exhibited in treated fish, compared with the controls. Furthermore, the expression of nf-κb1, three pro-inflammatory cytokines (il1β, il6, and tnfα), and inflammatory cytokines (il8 and il10) were significantly increased in both the SB-431542-treated group and the control after A. hydrophila infection, suggesting that the NF-κB pathway was not suppressed in the SB-431542-treated fish. Taken together, our data suggest that both mstn1 and mstn2 play important roles in early body development, muscle growth, and the immune system by acting downstream of the NF-κB signal pathway.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongjing Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yufeng Xu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xiao Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Chuanju Dong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xue Tian
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
4
|
Liu X, Shi H, He Q, Lin F, Wang Q, Xiao S, Dai Y, Zhang Y, Yang H, Zhao H. Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2020; 97:182-193. [PMID: 31790749 DOI: 10.1016/j.fsi.2019.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental changes can lead to food deprivation among aquatic animals. The main objective of this present research was to assess the effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in a hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). A total of 120 fish with an average weight of 74.16 ± 12.08 g were randomly divided into two groups (control group and fasted-refed group). The control group was fed until satiation for 60 days, while the fasted-refed group was fasted for 30 days and then fed to satiation for 30 days. The results showed that starvation led to a significantly decreased growth performance parameters [weight gain rate (WGR) and specific weight gain rate (SGR), while the feeding rate (FR) ] increased during the refeeding, non-specific immunity was significantly improved (p < 0.05) during the first 15 days of starvation, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), lysozyme (LYM) and catalase (CAT). However, non-specific immunity decreased at 30 days of starvation, the expression of genes related to immunity, such as TNF-α, was upregulated (p < 0.05) during starvation, while the expression levels of IL-17 and IFN-γ was reduced (p < 0.05). The expression of IFN-γ and IL-1β peaked during refeeding. Starvation led to significantly decreased abundance and diversity of intestinal microflora, with a higher abundance of Vibrio and a lower abundance of Brevibacillus, Bifidobacterium, Alloprevotella in the fasted-refed group during refeeding than in the control group. The above results reveal that starvation stimulates changes in growth, non-specific immunity, and the gut microbiota, providing new insights for the study of fish habitat selection and adaptability to environmental changes.
Collapse
Affiliation(s)
- Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Herong Shi
- Guangdong Marine Fishery Experiment Center, Huizhou, 516081, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Yuantang Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Yanfa Zhang
- Huizhou Haiyan Aquaculture Technology Co., Ltd., Huizhou, 516081, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Jia WH, Wang NQ, Yin L, Chen X, Hou BY, Qiang GF, Chan CB, Yang XY, Du GH. Effect of skeletal muscle phenotype and gender on fasting-induced myokine expression in mice. Biochem Biophys Res Commun 2019; 514:407-414. [PMID: 31056256 DOI: 10.1016/j.bbrc.2019.04.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Skeletal muscle secretes myokines, which are involved in metabolism and muscle function regulation. The role of fasting on myokine expression in skeletal muscle is largely unknown. In this study, we used gastrocnemius skeletal muscle RNA sequencing data from fasting male mice in the Gene Expression Omnibus (GEO) database. Adopted male and female C57BL/6J mice that fasted for 24 h were included to examine the effect of fasting on myokine expression in slow-twitch soleus and fast-twitch tiabialis anterior (TA) skeletal muscle. We found that fasting significantly affected many myokines in muscle. Fasting reduced Fndc5 and Igf1 gene expression in soleus and TA muscles in both male and female mice without muscle phenotype or gender differences, but Il6, Mstn and Erfe expression was influenced by fasting with fibre type- and gender-dependent effects. Fasting also induced muscle atrophy marker genes Murf1 and Fbxo32 and reduced myogenesis factor Mef2 expression without muscle fibre or gender differences. We further found that the expression of transcription factors Pgc1α, Pparα, Pparγ and Pparδ had muscle fibre type-dependent effects, and the expression of Pgc1α and Pparα had gender-dependent effects. The sophisticated expression pattern of myokines would partially explain the complicated cross-talk between skeletal muscle and other organs in different genders and muscles phenotypes, and it is worth further investigation.
Collapse
Affiliation(s)
- Wei-Hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Nuo-Qi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Xi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, 6N01 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
6
|
Xie S, Zhou A, Feng Y, Wang Z, Fan L, Zhang Y, Zeng F, Zou J. Effects of fasting and re-feeding on mstn and mstnb genes expressions in Cranoglanis bouderius. Gene 2019; 682:1-12. [DOI: 10.1016/j.gene.2018.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/09/2022]
|
7
|
Effects of short-term fasting on the rhythmic expression of core circadian clock and functional genes in skeletal muscle of goldfish (Carassius auratus). Comp Biochem Physiol B Biochem Mol Biol 2018; 226:91-98. [DOI: 10.1016/j.cbpb.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
8
|
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System. Sci Rep 2017; 7:7301. [PMID: 28779173 PMCID: PMC5544710 DOI: 10.1038/s41598-017-07223-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.
Collapse
Affiliation(s)
- Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Medhat Elayat
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samer Daghash
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Michael Miller
- Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - David Drescher
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Bugg
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dalton Robinson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Kanjanaworakul P, Sawatdichaikul O, Poompuang S. cDNA sequence and protein bioinformatics analyses of MSTN in African catfish (Clarias gariepinus). Mol Biol Rep 2016; 43:283-93. [PMID: 26912268 DOI: 10.1007/s11033-016-3961-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
Myostatin, also known as growth differentiation factor 8, has been identified as a potent negative regulator of skeletal muscle growth. The purpose of this study was to characterize and predict function of the myostatin gene of the African catfish (Cg-MSTN). Expression of Cg-MSTN was determined at three growth stages to establish the relationship between the levels of MSTN transcript and skeletal muscle growth. The partial cDNA sequence of Cg-MSTN was cloned by using published information from its congener walking catfish (Cm-MSTN). The Cg-MSTN was 1194 bp in length encoding a protein of 397 amino acids. The deduced MSTN sequence exhibited key functional sites similar to those of other members of the TGF-β superfamily, especially, the proteolytic processing site (RXXR motif) and nine conserved cysteines at the C-terminal. Expression of MSTN appeared to be correlated with muscle development and growth of African catfish. Protein bioinformatics revealed that the primary sequence of Cg-MSTN shared 98 % sequence identity with that of walking catfish Cm-MSTN with only two different residues, [Formula: see text]. and [Formula: see text]. The proposed model of Cg-MSTN revealed the key point mutation [Formula: see text] causing a 7.35 Å shorter distance between the N- and C-lobes and an approximately 11° narrow angle than those of Cm-MSTN. The substitution of a proline residue near the proteolytic processing site which altered the structure of myostatin may play a critical role in reducing proteolytic activity of this protein in African catfish.
Collapse
Affiliation(s)
- Poonmanee Kanjanaworakul
- Center for Agricultural Biotechnology, Kasetsart University, Nakorn Pathom, 73140, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, 10900, Thailand.
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|