1
|
Vinnicombe KRT, Volkoff H. Possible role of transcription factors (BSX, NKX2.1, IRX3 and SIRT1) in the regulation of appetite in goldfish (Carassius auratus). Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111189. [PMID: 35307341 DOI: 10.1016/j.cbpa.2022.111189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
The homeobox genes play important roles in the embryonic development of animals. Recent evidence suggests they might also regulate feeding and act as transcription factors of appetite regulators. Examples of these genes are a brain-specific homeobox transcription factor (BSX), NK2 homeobox 1 (NKX2.1) and the Iroquois homeobox 3 (IRX3). Sirtuin1 (SIRT1) acts as a transcription factor for nutrient (e.g. lipid, glucose) homeostasis and responds to stress and nutrient availability, and has been shown to interact with appetite regulators. Very little is known about the role of these genes in the regulation of feeding and nutrient homeostasis in fish. In this study, we assessed the roles of BSX, NKX2.1, IRX3 and SIRT1 in the central regulation of feeding in goldfish by examining their mRNA brain distribution, assessing the effects of fasting on their brain expression and assessing the effects of peripheral injections of cholecystokinin (CCK, a brain-gut peptide), on their brain expression. All genes showed a widespread distribution in the brain, with high levels in the hypothalamus. In both hypothalamus and telencephalon, fasting induced increases in BSX, IRX3 and NKX2.1 expressions but had no effect on SIRT1 expression levels. CCK injections increased hypothalamic expression levels of IRX3 and SIRT1, and telencephalic expression levels of NKX2.1 and SIRT1, with no effect on either hypothalamic BSX or NKX2.1 expression levels or telencephalon BSX or IRX3 expression levels. Our results suggest that, in goldfish as in mammals, central BSX, NKX2.1, IRX3 and SIRT1 are present in regions of the brain regulating feeding, are sensitive to nutrient status and interact with appetite-regulating peptides.
Collapse
Affiliation(s)
- Kelsey R T Vinnicombe
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
2
|
Tan S, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Hao Y, Zhou H, Gao Y, Peng R. Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Sci Rep 2021; 11:12348. [PMID: 34117282 PMCID: PMC8196025 DOI: 10.1038/s41598-021-91622-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory and cAMP response element binding (CREB)-related pathways. A total of 120 male Wistar rats were divided into four groups: a control group (C); 2.856 GHz microwave exposure group (S group); 1.5 GHz microwave exposure group (L group); and 2.856 and 1.5 GHz cumulative exposure group (SL group). Decreases in spatial memory abilities, changes in EEG, structural injuries, and the downregulation of phosphorylated-Ak strain transforming (p-AKT), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signal regulated kinase (p-ERK) and p-CREB was observed 6 h after microwave exposure. Significant differences in the expression of p-CaMKII were found between the S and L groups. The power amplitudes of the EEG waves (θ, δ), levels of structural injuries and the expression of p-AKT, p-CaMK II, p-CREB, and p-ERK1/2 were significantly different in the S and L groups compared to the SL group. Interaction effects between the 2.856 and 1.5 GHz microwaves were found in the EEG and p-CREB changes. Our findings indicated that 2.856 GHz and 1.5 GHz microwave exposure induced a decline in spatial memory, which might be related to p-AKT, p-CaMK II, p-CREB and p-ERK1/2.
Collapse
Affiliation(s)
- Shengzhi Tan
- PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Thangaleela S, Ragu Varman D, Sivasangari K, Rajan KE. Inhibition of monoamine oxidase attenuates social defeat-induced memory impairment in goldfish, (Carassius auratus): A possible involvement of synaptic proteins and BDNF. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108873. [PMID: 32805442 DOI: 10.1016/j.cbpc.2020.108873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
Abstract
Social defeat (SD) has been implicated in different modulatory effects of physiology and behaviour including learning and memory. We designed an experiment to test the functional role of monoamine oxidase (MAO) in regulation of synaptic transmission, synaptic plasticity and memory in goldfish Carassius auratus. To test this, individuals were divided into three groups: (i) control; (ii) social defeat (SD) group (individuals were subjected to social defeat for 10 min by Pseudotropheus demasoni) and (iii) SD + MAO inhibitor pre-treated group. All experimental groups were subjected to spatial learning and then memory. Our results suggest that SD affects a spatial learning and memory, whereas SD exerts no influence on MAOI pre-treated group. In addition, we noted that the expression of monoamine oxidase-A (MAO-A) was up-regulated and level of serotonin (5-hydroxytryptamine; 5-HT), expression of serotonin transporter (SERT), synaptophysin (SYP), synaptotagmin -1 (SYT-1), N-methyl-D-asparate (NMDA) receptors subunits (NR2A and NR2B), postsynaptic density-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) were reduced by SD, while MAOIs pretreatment protects the effect of SD. Taken together, our results suggest that MAO is an essential component in the serotonergic system that finely tunes the level of 5-HT, which further regulates the molecules involving in synaptic transmission, synaptic plasticity and memory.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Durairaj Ragu Varman
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
4
|
Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and Alzheimer’s Disease. Mol Neurobiol 2019; 56:5556-5567. [DOI: 10.1007/s12035-019-1469-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
5
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Afonso JM, Pérez-Sánchez J. Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream ( Sparus aurata) With Differences in Growth Performance. Front Physiol 2018; 9:608. [PMID: 29922168 PMCID: PMC5996159 DOI: 10.3389/fphys.2018.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Sirtuins (SIRTs) represent a conserved protein family of deacetylases that act as master regulators of metabolism, but little is known about their roles in fish and livestock animals in general. The present study aimed to assess the value of SIRTs for the metabolic phenotyping of fish by assessing their co-expression with a wide-representation of markers of energy and lipid metabolism and intestinal function and health in two genetically different gilthead sea bream strains with differences in growth performance. Fish from the fast-growing strain exhibited higher feed intake, feed efficiency and plasma IGF-I levels, along with higher hepatosomatic index and lower mesenteric fat (lean phenotype). These observations suggest differences in tissue energy partitioning with an increased flux of fatty acids from adipose tissue toward the liver. The resulting increased risk of hepatic steatosis may be counteracted in the liver by reduced lipogenesis and enhanced triglyceride catabolism, in combination with a higher and more efficient oxidative metabolism in white skeletal muscle. These effects were supported by co-regulated changes in the expression profile of SIRTs (liver, sirt1; skeletal muscle, sirt2; adipose tissue, sirt5-6) and markers of oxidative metabolism (pgc1α, cpt1a, cs, nd2, cox1), mitochondrial respiration uncoupling (ucp3) and fatty acid and triglyceride metabolism (pparα, pparγ, elovl5, scd1a, lpl, atgl) that were specific to each strain and tissue. The anterior intestine of the fast-growing strain was better suited to cope with improved growth by increased expression of markers of nutrient absorption (fabp2), epithelial barrier integrity (cdh1, cdh17) and immunity (il1β, cd8b, lgals1, lgals8, sIgT, mIgT), which were correlated with low expression levels of sirt4 and markers of fatty acid oxidation (cpt1a). In the posterior intestine, the fast-growing strain showed a consistent up-regulation of sirt2, sirt3, sirt5 and sirt7 concurrently with increased expression levels of markers of cell proliferation (pcna), oxidative metabolism (nd2) and immunity (sIgT, mIgT). Together, these findings indicate that SIRTs may play different roles in the regulation of metabolism, inflammatory tone and growth in farmed fish, arising as powerful biomarkers for a reliable metabolic phenotyping of fish at the tissue-specific level.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Juan M Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (GIA), Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| |
Collapse
|
6
|
Thangaleela S, Shanmugapriya V, Mukilan M, Radhakrishnan K, Rajan KE. Alterations in MicroRNA-132/212 Expression Impairs Fear Memory in Goldfish Carassius auratus. Ann Neurosci 2018; 25:90-97. [PMID: 30140120 DOI: 10.1159/000486842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Earlier, we showed that nicotinamide (NAM) treatment impairs spatial memory through the downregulation of CREB-Sirt 1-brain-derived neurotrophic factor (Bdnf) signaling cascade. Purpose In this study, we examine whether NAM treatment alters CREB-regulated genes through -microRNAs. Method To test this hypothesis, goldfish (Carassius auratus) were divided into 2 groups: (i) vehicle group (VEH; double distilled water intra-peritoneally [i.p.]) (ii) nicotinamide group (NAM, 1,000 mg/kg, i.p.) and again divided into VEH untrained/trained, NAM untrained/trained. One hour after receiving VEH or NAM, individuals were subject to contextual fear conditioning (CFC) training. After 24 h, both the groups were tested for contextual fear memory. Subsequently, miR-132/212 levels, regulated immediate-early genes (IEGs: C-fos and EGR-1) and Bdnf but not its receptor. -TrkB1were examined following 0' and 60' min after training, and compared with the untrained group. Results We observed that NAM treatment significantly impaired fear memory. Further, the analysis showed that miR-132 level was not altered, but miR-212 level was significantly upregulated after CFC training only in NAM-treated fish. We also found that NAM treatment downregulated IEGs and Bdnf but not its receptor TrkB1. Conclusions Present study suggests that NAM-treatment impaired fear memory and control IEGs, Bdnf and TrkB1 expression by differentially regulating miR-132 and 212.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vasudevan Shanmugapriya
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
7
|
Simó-Mirabet P, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). J Comp Physiol B 2016; 187:153-163. [DOI: 10.1007/s00360-016-1014-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023]
|
8
|
He X, Deng FJ, Ge JW, Yan XX, Pan AH, Li ZY. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res 2015; 10:1450-6. [PMID: 26604906 PMCID: PMC4625511 DOI: 10.4103/1673-5374.165514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total saponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of doublecortin (DCX)+ neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+ neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX+ cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.
Collapse
Affiliation(s)
- Xu He
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China ; Department of Anatomy, Yiyang Medical College, Yiyang, Hunan Province, China
| | - Feng-Jun Deng
- Department of Pharmacy, Yiyang Medical College, Yiyang, Hunan Province, China
| | - Jin-Wen Ge
- Department of Integrated Traditional and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ai-Hua Pan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Zhi-Yuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|