1
|
Effects of Dietary Phosphorus Levels on Growth Performance, Phosphorus Utilization and Intestinal Calcium and Phosphorus Transport-Related Genes Expression of Juvenile Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12223101. [PMID: 36428331 PMCID: PMC9687074 DOI: 10.3390/ani12223101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
A 60-day feeding trial was performed to assess the effects of dietary phosphorus levels on growth performance, body composition, phosphorus utilization, plasma physiological parameters and intestinal Ca and P transport-related gene expression of juvenile Chinese soft-shelled turtle (P. sinensis). Four diets containing available P at graded levels of 0.88%, 1.00%, 1.18% and 1.63% (termed as D0.88, D1.00, D1.18 and D1.63, respectively) were formulated and each diet was fed to turtles (5.39 ± 0.02 g) in sextuplicate. The turtles were randomly distributed to 24 tanks with 8 turtles per tank. The results indicated that final body weight, specific growth rate, feed conversion ratio and protein efficiency ratio performed best in turtles fed 1.00% available P diet. The crude lipids of the whole body exhibited a decreasing trend with the dietary available P, whereas the calcium and phosphorus of the whole body and bone phosphorus showed an opposite tendency. The apparent digestibility coefficient of phosphorus declined with the dietary available P. Turtles fed 1.00% available phosphorus had the highest phosphorus retention ratio compared with other treatments. Simultaneously they had significantly lower phosphorus loss than turtles fed D1.18 and D1.63 and had no differences in this respect from turtles fed a low-phosphorus diet. It was noteworthy that the lowest plasma calcium concentrations, and alkaline phosphatase activities in plasma and liver, were discovered in turtles fed the diet containing 1.63% available phosphorus. In addition, the high-phosphorus diet resulted in significantly down-regulated expression of intestinal phosphorus and calcium transport-related key genes. In conclusion, the available phosphorus requirement of juvenile P. sinensis was determined at 1.041% (total phosphorus was 1.80%) based on quadratic regression of weight gain rate, and excessive dietary phosphorus stunted turtle growth possibly via inhibiting intestinal calcium absorption.
Collapse
|
2
|
Dai YS, Pei WL, Wang YY, Wang Z, Zhuo MQ. Topology, tissue distribution, and transcriptional level of SLC34s in response to Pi and pH in grass carp Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1383-1393. [PMID: 34282499 DOI: 10.1007/s10695-021-00981-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In the present study, two new SLC34 family members, named slc34a1b and slc34a2a, were isolated and characterized from grass carp Ctenopharyngodon idella. Topology, tissue distribution, and transcriptional response to phosphorus (Pi) and pH were compared among three members of SLC34 family (slc34a1b, slc34a2a, and slc34a2b) in grass carp. The length of validated cDNAs of grass carp slc34a1b and slc34a2a was 1494 bp and 1902 bp, and these two cDNAs encoded 497 and 633 amino acid residues, respectively. The domain analysis showed that three SLC34 members of grass carp contain architecture similar to that in mammals. Moreover, the mRNA of three slc34s was widely expressed in nine tissues (heart, brain, intestine, kidney, liver, muscle, gill, spleen, and skin), but at various levels. Our results revealed that 6 mM and 9 mM Pi incubation significantly reduced the mRNA expression of three slc34s in both CIK and L8824 cell lines from grass carp. The expression of slc34a1b was decreased in the CIK cells, but not in the L8824 cells after 3 mM Pi incubation. In CIK cells, 3 mM Pi incubation downregulated the expression of slc34a1b and slc34a2a, but not slc34a2b. In addition, the expression of three slc34s was significantly reduced at acidic pH in the CIK cells. Taken together, we characterized three SLC34 family members, revealed their specific distribution among different tissues, and elucidated their transcriptional responses to Pi and pH in two cell lines from grass carp. Our findings provide an insight into the physiological function of three SLC34s in fish.
Collapse
Affiliation(s)
- Yong-Shuang Dai
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
| | - Wen-Li Pei
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
| | - Yuan-Yuan Wang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
| | - Zhe Wang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
| | - Mei-Qin Zhuo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China.
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X, Zhu Y, Song Y, Chen H, Ma T, Zhao R, Jiang H, Zhang B, Feng C, Yuan Y, Gan X, Li Y, Zeng H, Liu Q, Zhang Y, Shao F, Hao S, Zhang H, Xu X, Liu X, Wang D, Zhu M, Zhang G, Zhao W, Qiu Q, He S, Wang W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021; 184:1362-1376.e18. [PMID: 33545087 DOI: 10.1016/j.cell.2021.01.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.
Collapse
Affiliation(s)
- Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiang Hu
- Grandomics Biosciences, Beijing 102200, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Youan Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Tiantian Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qun Liu
- BGI-Qingdao, Qingdao 266555, China
| | | | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | - He Zhang
- BGI-Qingdao, Qingdao 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Min Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
4
|
Verri T, Werner A. Type II Na +-phosphate Cotransporters and Phosphate Balance in Teleost Fish. Pflugers Arch 2018; 471:193-212. [PMID: 30542786 DOI: 10.1007/s00424-018-2239-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/27/2022]
Abstract
Teleost fish are excellent models to study the phylogeny of the slc34 gene family, Slc34-mediated phosphate (Pi) transport and how Slc34 transporters contribute Pi homeostasis. Fish need to accumulate Pi from the diet to sustain growth. Much alike in mammals, intestinal uptake in fish is partly a paracellular and partly a Slc34-mediated transcellular process. Acute regulation of Pi balance is achieved in the kidney via a combination of Slc34-mediated secretion and/or reabsorption. A great plasticity is observed in how various species perform and combine the different processes of secretion and reabsorption. A reason for this diversity is found in one or two whole genome duplication events followed by potential gene loss; consequently, teleosts exhibit distinctly different repertoires of Slc34 transporters. Moreover, due to habitats with vastly different salinity, teleosts face the challenge of either preserving water in a hyperosmotic environment (seawater) or excreting water in hypoosmotic freshwater. An additional challenge in understanding teleost Pi homeostasis are the genome duplication and retention events that diversified peptide hormones such as parathyroid hormone and stanniocalcin. Dietary Pi and non-coding RNAs also regulate the expression of piscine Slc34 transporters. The adaptive responses of teleost Slc34 transporters to e.g. Pi diets and vitamin D are informative in the context of comparative physiology, but also relevant in applied physiology and aquaculture. In fact, Pi is essential for teleost fish growth but it also exerts significant adverse consequences if over-supplied. Thus, investigating Slc34 transporters helps tuning the physiology of commercially valuable teleost fish in a confined environment.
Collapse
Affiliation(s)
- Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Andreas Werner
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Chen K, Zhou XQ, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 74:175-189. [PMID: 29305994 DOI: 10.1016/j.fsi.2017.12.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
6
|
Lu KL, Ji ZL, Rahimnejad S, Zhang CX, Wang L, Song K. De novo assembly and characterization of seabass Lateolabrax japonicus transcriptome and expression of hepatic genes following different dietary phosphorus/calcium levels. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:51-59. [PMID: 28822867 DOI: 10.1016/j.cbd.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
Abstract
Fish farming seriously influences the aquatic environment because most dietary phosphorus (P) is excreted in the effluent. To increase the P utilization in fish, molecular techniques should be explored given the remarkable development of these techniques. Thus, to identify the candidate genes related to P utilization and molecular alterations following administration of a P-deficient diet in seabass Lateolabrax japonicus, we assessed the de novo pituitary, gill, intestine, liver, kidney, scales and vertebra transcriptomes, and we compared the expression of hepatic genes with three diets varying in P and Ca levels: diet I (0.4% P, 0.3% Ca), diet II (0.8% P, 0.3% Ca), and diet III (0.8% P, 3% Ca). In total, we identified 99,392 unigenes, and 37,086 (37.31%) unigenes were annotated. The results showed that 48 unigenes were significantly (P<0.05) up-regulated, while 55 genes were significantly down-regulated in the liver of group I compared with group II. Offering the P-sufficient and high Ca diet, diet III significantly up-regulated 24 unigenes and down-regulated 46 genes in the liver. There were significant differences in the regulation of 8 unigenes (3 up-regulated and 5 down-regulated) between groups II and III. Gene ontology (GO) functional enrichment and KEGG pathway analysis of differently expressed genes were performed for each pair of groups. The GO analysis showed that a large number of biological processes were significantly altered between P-deficient and P-sufficient treatments (I vs II and I vs III). Comparing group I and group II, seven KEGG terms were enriched significantly: glycine, serine and threonine metabolism, one carbon pool by folate, arginine and proline metabolism, the biosynthesis of unsaturated fatty acids, fatty acid elongation, drug metabolism-cytochrome P450, and fatty acid metabolism. There was no significantly enriched KEGG pathway between groups II and III. In conclusion, our study revealed that a P-deficient diet could increase catabolism and decrease anabolism of protein, as highlighted by low protein efficiency in fish fed the P-deficient diet. Furthermore, P-deficiency could motivate the biosynthesis of fatty acids. However, the dietary Ca level had no significant effect on the growth and expression of hepatic genes in L. japonicus.
Collapse
Affiliation(s)
- Kang-Le Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhong-Li Ji
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chun-Xiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
7
|
Chen P, Huang Y, Bayir A, Wang C. Characterization of the isoforms of type IIb sodium-dependent phosphate cotransporter (Slc34a2) in yellow catfish, Pelteobagrus fulvidraco, and their vitamin D 3-regulated expression under low-phosphate conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:229-244. [PMID: 27620186 DOI: 10.1007/s10695-016-0282-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
In this study, two isoforms slc34a2 genes (type IIb sodium-dependent phosphate cotransporter), slc34a2a2 and slc34a2b, were cloned from intestine and kidney of yellow catfish (Pelteobagrus fulvidraco), with rapid amplification of cDNA ends. The structure differences and the regulation effects of dietary VD3 under low phosphorus were compared among three isoforms of slc34a2 in yellow catfish. The predicted Slc34a2a2 and Slc34a2b proteins match 65 % and 53.8 % sequence identity, with Slc34a2a1, respectively. The membrane-spanning domains were different among these three isoforms. Intestinal Slc34a2a1 and Slc34a2a2 proteins had eight and eleven transmembrane domains, while renal Slc34a2b protein had nine. The tissue distribution study showed that same as slc34a2a1, slc34a2a2 mRNA was mainly distributed in intestine and slc34a2b mRNA in kidney. The effect of vitamin D3 (VD3) level on slc34a2 subfamily expression under low-phosphate conditions, induced by the addition of 0 (VD0), 324 (VD1), 1243 (VD2), 3621 (VD3), 8040 (VD4), or 22700 (VD5) IU VD3/kg feed, was assessed by qPCR. The dose-responsive expression of intestinal slc34a2a2 and high expression of intestinal slc34a2a2 in VD5 together with peak expression of kidney slc34a2b in VD3 coincided with the accumulation of body phosphate content. These data suggested that appropriate level of dietary VD3 up-regulated slc34a2a1, slc34a2a2, and slc34a2b mRNA levels, which increased phosphate retention. In conclusion, the current study provided another possible approach to improve dietary phosphate utilization by adding appropriate level of VD3 to a low-phosphate diet to regulate intestinal and renal slc34a2 gene expression and thus minimize the excretion of phosphorus in yellow catfish.
Collapse
Affiliation(s)
- Pei Chen
- The College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, People's Republic of China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai, 200090, People's Republic of China
| | - Abdulkadir Bayir
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Chunfang Wang
- The College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Kodzhahinchev V, Kovacevic D, Bucking C. Identification of the putative goldfish (Carassius auratus) magnesium transporter SLC41a1 and functional regulation in the gill, kidney, and intestine in response to dietary and environmental manipulations. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:69-81. [PMID: 28130070 DOI: 10.1016/j.cbpa.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
While magnesium requirements for teleost fish highlight the physiological importance of this cation for homeostasis, little is known regarding the molecular identity of transporters responsible for magnesium absorption or secretion. The recent characterization of the vertebrate magnesium transporter solute carrier 41a1 (SLC41a1) in the kidney of a euryhaline fish has provided a glimpse of possible moieties involved in piscine magnesium regulation. The present study obtained a novel SLC41a1 coding sequence for Carassius auratus and demonstrated ubiquitous expression in all tissues examined. Transcriptional regulation of SLC41a1 in response to dietary and environmental magnesium concentrations was observed across tissues. Specifically, decreased environmental magnesium correlated with decreased expression of SLC41a1 in the intestine, whereas the gill and kidney were unaffected. Dietary magnesium restriction correlated with decreased expression of SLC41a1 in the intestine and gill, while again no effects were detected in the kidney. Finally, elevated dietary magnesium correlated with increased expression of SLC41a1 in the kidney, while expression in the intestine and gill remained stable. Plasma magnesium was maintained in all treatments, and dietary assimilation efficiency increased with decreased dietary magnesium. Consumption of a single meal failed to impact SLC41a1 expression, and transcript abundance remained stable over the course of digestion in all treatments. Transcriptional regulation occurred between 7 and 14days following dietary and environmental manipulations and short-term regulation (e.g. <24h) was not observed. Overall the data supports transcriptional regulation of SLC41a1 reflecting a possible role in magnesium loss or secretion across tissues in fish.
Collapse
Affiliation(s)
| | - Drago Kovacevic
- York University, Department of Biology, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada
| | - Carol Bucking
- York University, Department of Biology, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|