1
|
Effect of Leucine-enkephalin on Lipid Deposition and GSK-3β/mTOR Signaling in the Liver of Zebrafish. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
2
|
Yuan Y, Jiang X, Wang X, Chen N, Li S. Toxicological impacts of excessive lithium on largemouth bass (Micropterus salmoides): Body weight, hepatic lipid accumulation, antioxidant defense and inflammation response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156784. [PMID: 35724795 DOI: 10.1016/j.scitotenv.2022.156784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The unreasonably anthropogenic activities make lithium a widespread pollutant in aquatic environment, and this metallic element can enter the food chain to influence humans. Therefore, the study was designed to explore the influence of dietary lithium supplementation on body weight, lipid deposition, antioxidant capacity and inflammation response of largemouth bass. Multivariate statistical analysis confirmed the toxicological impacts of excessive lithium on largemouth bass. Specifically, excessive dietary lithium (≥87.08 mg/kg) significantly elevated weight gain and feed intake of largemouth bass. Meanwhile, overload lithium inclusion aggravated the accumulation of hepatic lipid and serum lithium. Gene expression results showed that lithium inclusion, especially overload lithium, promoted the transcription of lipogenesis related genes, PPARγ, ACC and FAS, inhibited the expression of fatty acid oxidation related genes, PPARα and ACO, and lipolysis related genes, HSL and MGL. Meanwhile, high lithium inclusion caused the oxidative stress, which was partly through the inhibition of Nrf2/Keap1 pathway. Moreover, dietary lithium inclusion significantly depressed the activity of hepatic lysozyme, and promoted the transcription of proinflammation factors, TNF-α, 5-LOX, IL-1β and IL-8, which was suggested to be regulated by the p38 MAPK pathway. Our findings suggested that overload lithium resulted in increased body weight, hepatic lipid deposition, oxidative stress and inflammation response. The results obtained here provided novel insights on the toxicological impacts of excessive lithium on aquatic animals.
Collapse
Affiliation(s)
- Yuhui Yuan
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Xueluan Jiang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Xiaoyuan Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Liu D, Gu Y, Pang Q, Yu H, Zhang J. Dietary betaine regulates the synthesis of fatty acids through mTOR signaling in the muscle of zebrafish. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Glycogen synthase kinase-3β (GSK-3β) of grass carp (Ctenopharyngodon idella): Synteny, structure, tissue distribution and expression in oleic acid (OA)-induced adipocytes and hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2020; 241:110391. [DOI: 10.1016/j.cbpb.2019.110391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
|
5
|
Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158552. [PMID: 31676444 DOI: 10.1016/j.bbalip.2019.158552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 11/18/2022]
|
6
|
Liu D, Gu Y, Pang Q, Han Q, Li A, Wu W, Zhang X, Shi Q, Zhu L, Yu H, Zhang Q. Vitamin C inhibits lipid deposition through GSK-3β/mTOR signaling in the liver of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:383-394. [PMID: 31782040 DOI: 10.1007/s10695-019-00727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, the mechanism that VC inhibits lipid deposition through GSK-3β/mTOR signaling was investigated in the liver of Danio rerio. The results indicated that 0.5- and 1.0-g/kg VC treatments activated mTOR signaling by inhibiting GSK-3β expression. The mRNA expression of FAS, ACC, and ACL, as well as the content of TG, TC, and NEFA, was decreased by 0.5- and 1.0-g/kg VC treatments. Moreover, to confirm GSK-3β playing a key role in regulating TSC2 and mTOR, GSK-3β RNA was interfered and the activity of GSK-3β was inhibited by 25- and 50-mg/L LiCl treatments, respectively. The results indicated that GSK-3β inactivation played a significant role in inducing mTOR signaling and inhibiting lipid deposition. VC treatments could induce mTOR signaling by inhibiting GSK-3β, and mTOR further participated in regulating lipid deposition by controlling lipid profile in the liver of zebrafish.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Yaqi Gu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiang Han
- Research and Development Office, Sunwin Biotech Shandong Co., Ltd., Weifang, 262737, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Xiuzhen Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Lanlan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, China
| |
Collapse
|
7
|
Wang Y, Zhan X, Luo W, Zhao L, Yang S, Chen D, Li Z, Wang L. GSK3β inhibition suppresses the hepatic lipid accumulation in Schizothorax prenanti. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1953-1961. [PMID: 31401708 DOI: 10.1007/s10695-019-00691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Glycogen synthase kinase-3β (GSK3β) is a serine/threonine kinase involved in the regulation of embryonic development, glycogen metabolism, protein synthesis, mitosis, and apoptosis. To understand the role of GSK3β in hepatic lipid accumulation of Schizothorax prenanti, we used lithium chloride (LiCl), a GSK3β inhibitor, to inhibit the expression and activity of GSK3β. LiCl increased levels of phosphorylation of GSK3β (Ser9) and decreased the protein level of GSK3β. Plasma TG, TC, and LDL-C levels were greatly decreased after LiCl treatment. Additionally, GSK3β inhibition significantly reduced the levels of hepatic triglyceride (TG) and decreased the expression of lipogenesis-related genes in liver. Interestingly, LiCl decreased levels of phosphorylation of STAT3 (Tyr705), and then inhibited the activity of STAT3. These results indicate that in vivo LiCl treatment, which inhibited GSK3β activity, effectively decreased hepatic lipid accumulation through STAT3 in Schizothorax prenanti.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | | | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Wu F, Wu L, Wu Q, Zhou L, Li W, Wang D. Duplication and gene expression patterns of β-catenin in Nile tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:651-659. [PMID: 29290067 DOI: 10.1007/s10695-017-0460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
β-Catenin, a key transcriptional coactivator of the Wnt pathway, plays an important role in animal embryonic development and organogenesis. In our earlier study, we have reported that two types of β-catenin (β-catenin-1 and β-catenin-2) were ubiquitously expressed in almost all the tissues examined in tilapia. However, the immunolocalization of β-catenin in those tissues, especially in extra-gonadal tissues, remains unclear. In the present study, we further confirm that these two types of β-catenin gene exist only in teleosts and are derived from 3R (third round of genome duplication) by phylogenetic and syntenic analyses. Moreover, the transcriptome analysis conducted in this investigation reveals that two β-catenins exhibited similar expression patterns in seven adult tissues and four key developmental stages of XX and XY gonads. Finally, immunohistochemistry analysis was performed to detect the cell localization of β-catenin. A positive signal of β-catenin was observed in various tissues of tilapia, such as the intestine, liver, kidney, spleen, eye, brain, and gonads. The results of our study indicate that tilapia β-catenin might be involved in the organ development and play some specific functions in biological processes; all these data will provide basic reference for understanding the molecular mechanism of β-catenin in regulating of teleost organogenesis.
Collapse
Affiliation(s)
- Fengrui Wu
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China.
| | - Limin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Qingqing Wu
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Antonopoulou E, Kaitetzidou E, Castellana B, Panteli N, Kyriakis D, Vraskou Y, Planas JV. In Vivo Effects of Lipopolysaccharide on Peroxisome Proliferator-Activated Receptor Expression in Juvenile Gilthead Seabream (Sparus Aurata). BIOLOGY 2017; 6:biology6040036. [PMID: 28946685 PMCID: PMC5745441 DOI: 10.3390/biology6040036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 01/16/2023]
Abstract
Fish are constantly exposed to microorganisms in the aquatic environment, many of which are bacterial pathogens. Bacterial pathogens activate the innate immune response in fish involving the production of pro-inflammatory molecules that, in addition to their immune-related role, can affect non-immune tissues. In the present study, we aimed at investigating how inflammatory responses can affect metabolic homeostasis in the gilthead seabream (Sparus aurata), a teleost of considerable economic importance in Southern European countries. Specifically, we mimicked a bacterial infection by in vivo administration of lipopolysaccharide (LPS, 6 mg/kg body weight) and measured metabolic parameters in the blood and, importantly, the mRNA expression levels of the three isotypes of peroxisome proliferator activated receptors (PPARα, β, and γ) in metabolically-relevant tissues in seabream. PPARs are nuclear receptors that are important for lipid and carbohydrate metabolism in mammals and that act as biological sensors of altered lipid metabolism. We show here that LPS-induced inflammatory responses result in the modulation of triglyceride plasma levels that are accompanied most notably by a decrease in the hepatic mRNA expression levels of PPARα, β, and γ and by the up-regulation of PPARγ expression only in adipose tissue and the anterior intestine. In addition, LPS-induced inflammation results in an increase in the hepatic mRNA expression and protein activity levels of members of the mitogen-activated protein kinase (MAPK) family, known in mammals to regulate the transcription and activity of PPARs. Our results provide evidence for the involvement of PPARs in the metabolic response to inflammatory stimuli in seabream and offer insights into the molecular mechanisms underlying the redirection of metabolic activities under inflammatory conditions in vertebrates.
Collapse
Affiliation(s)
- Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elisavet Kaitetzidou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Barbara Castellana
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios Kyriakis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Yoryia Vraskou
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Josep V Planas
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|