1
|
Sun Q, Zhang J, Wang J, Wang H, Gao Z, Liu H. Janus kinase 1 in Megalobrama amblycephala: Identification, phylogenetic analysis and expression profiling after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108620. [PMID: 36841516 DOI: 10.1016/j.fsi.2023.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Janus kinase 1 (JAK1), a member of the JAK family, plays an essential and non-redundant role in the mammalian immune system. However, the potential role of JAK1 in fish immune response remains largely unclear. In the present study, the JAK1 gene of Megalobrama amblycephala (MamJAK1) was identified and characterized. The open reading frame (ORF) of MamJAK1 was 3462 bp, encoding 1153 amino acids. MamJAK1 consists of four common domains of the JAK family, including B41, SH2, STyrKc (a pseudo kinase domain), and TyrKc (a kinase domain). Phylogenetic analysis showed that JAK1s are divided into two evolutionary clades, one containing fish JAK1s, and the other containing JAK1s from other vertebrates. The results of quantitative real-time PCR (qPCR) showed that in healthy M. amblycephala, MamJAK1 mRNA was highest expressed in blood, followed by spleen, intestine and mid-kidney, and lowly expressed in other tissues including gill, liver, head kidney, muscle, brain and heart. After Aeromonas hydrophila infection, the expression of MamJAK1 mRNA was significantly induced in four selected tissues including spleen, mid-kidney, liver and intestine, reaching a peak at 24 hpi (hour post infection) in spleen and mid-kidney, at 12 hpi in liver and at 4 hpi in intestine, and then the expression level was restricted to control levels at 72 or 120 hpi. In addition, the results of Western blot showed that the phosphorylation level of MamJAK1 protein in spleen and mid-kidney increased significantly after A. hydrophila infection, although MamJAK1 protein did not change obviously. Further, the JAK1 phosphorylation in Ctenopharyngodon idellus kidney (CIK) cells was found to be significantly induced by LPS stimulation and IL-6R over-expression. The results above suggest that MamJAK1 may play an essential role in the immune response against bacterial infection through the IL-6R mediated JAK1/STAT signaling pathway, which further deepen our understanding of JAK1 and provides a potential target for the treatment and prevention of bacterial diseases in teleost.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jian Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
2
|
Güroy D, Güroy B, Bilen S, Kenanoğlu ON, Şahin İ, Terzi E, Karadal O, Mantoğlu S. Effect of dietary celery (Apium graveolens) on the growth performance, immune responses, and bacterial resistance against Vibrio anguillarum of European seabass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:75-95. [PMID: 36502487 DOI: 10.1007/s10695-022-01158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
In this study, we evaluated to reveal the effects of aqueous methanolic extract of celery (Apium graveolens) on the growth performance, immune responses, and resistance against Vibrio anguillarum in European seabass (Dicentrarchus labrax). For this purpose, twenty fish (initial mean weight of 4.80 ± 0.06 g) were placed into twelve tanks (400 L) in triplicate and fish were fed with control (C) and three different levels (0.01, 0.05, and 0.1 g/kg) of A. graveolens (AG) extract-containing diets (AG0.01, AG0.05, and AG0.1) for 30 days. Blood and tissue (kidney, spleen, and intestine) samples were taken from the fish every 10 days during the study to determine the immune responses of the fish. Respiratory burst activity (RBA) was significantly decreased in the AG0.1 group compared to all other groups on the 10th day of the study (P < 0.05). Significance was noticed in the RBA of fish in all AG groups compared to the C group (P < 0.05) on the 30th day of the experiment Lysozyme activity (LYS) was raised on the 10th day of the study in all celery groups compared to the C group (P < 0.05). No differences in the myeloperoxidase activity (MPO) were observed among the experimental groups (P > 0.05). The final mean weight (FMW) was not affected in any experimental groups (P > 0.05). However, in the AG0.05 group, the specific growth rate (SGR) increased, and the feed conversion ratio (FCR) decreased compared to other groups (P < 0.05). IL-1β in the kidney was highly elevated in the AG0.01 group on the 20th day of the study (P < 0.05). Similar results were observed on IL-6, IL-8, and TNF-α expression in the kidney (P < 0.05). Anti-inflammatory responses (IL-10 and TGF-β) also increased in all experimental groups and tissues compared to the C group (P < 0.05). COX-2 was upregulated on the 20th day of the study in all tissues (P < 0.05). At the end of the feeding trial, the survival rate of the AG0.1 group in fish infected with Vibrio anguillarum infection was higher than the C group. Dietary celery extract did not affect growth performance directly but increased innate immune responses and a high survival rate. Overall, compared to the control group, the growth, immunity, and resistance of European seabass fed with a diet containing 0.05 g/kg celery aqueous methanolic extract has been improved, and this could be used as an immunostimulant feed additive.
Collapse
Affiliation(s)
- Derya Güroy
- Department of Aquaculture, Armutlu Vocational School, Yalova University, 77500, Armutlu, Yalova, Turkey.
| | - Betül Güroy
- Department of Food Processing, Armutlu Vocational School, Yalova University, 77500, Armutlu, Yalova, Turkey
| | - Soner Bilen
- Department of Aquaculture, Faculty of Fisheries, Kastamonu University, 37150, Kuzeykent, Kastamonu, Turkey
| | - Osman Nezih Kenanoğlu
- Department of Aquaculture, Faculty of Fisheries, Kastamonu University, 37150, Kuzeykent, Kastamonu, Turkey
| | - İzzet Şahin
- Department of Motor Vehicles and Transportation Technologies, Altınova Vocational School, Yalova University, 77700, Altınova, Yalova, Turkey
| | - Ertuğrul Terzi
- Department of Aquaculture, Faculty of Fisheries, Kastamonu University, 37150, Kuzeykent, Kastamonu, Turkey
| | - Onur Karadal
- Department of Aquaculture, Faculty of Fisheries, İzmir Katip Çelebi University, 35620, Çiğli, İzmir, Turkey
| | - Serhan Mantoğlu
- Department of Food Processing, Armutlu Vocational School, Yalova University, 77500, Armutlu, Yalova, Turkey
| |
Collapse
|
3
|
Wang J, Sun Q, Wang G, Wang H, Liu H. The effects of blunt snout bream (Megalobrama amblycephala) IL-6 trans-signaling on immunity and iron metabolism via JAK/STAT3 pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104372. [PMID: 35217123 DOI: 10.1016/j.dci.2022.104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic inflammatory cytokine, which plays a dual role in mammalian inflammation through both classical signaling (IL-6 binds to IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds to soluble IL-6R). However, the function of IL-6, especially the regulatory mechanism of IL-6 trans-signaling in immunity and iron metabolism remains largely unclear in teleost. Here, L8824 cells (Ctenopharyngodon idella hepatic cells) were stimulated with blunt snout bream (Megalobrama amblycephala) IL-6 combination with sIL-6R protein (rmaIL-6+rmasIL-6R/maIL-6 trans-signaling) or STAT3 inhibitor (c188-9), and RNA-sequencing, global transcriptional analyses. The enrichment analysis of GO and KEGG showed that maIL-6 trans-signaling is mainly involved in stress and inflammation response, and the activation of STAT3 is mainly related to cell proliferation, apoptosis and immune regulation. Furthermore, after treated L8824 cells with JAK2 inhibitors, it was found that the induction of IL-6 trans-signaling on the selected immune-related genes could be inhibited. These results implied that in early stage after rmaIL-6+rmasIL-6R treatment, the maIL-6 trans-signaling played an important role in the immune regulation through the JAK2/STAT3 pathway. By extending the rmaIL-6+rmasIL-6R treatment time, it was found that maIL-6 trans-signaling could promote the expression of iron metabolism related genes (ft, tf, tfr1, hamp and fpn1) in L8824 cells, indicating that maIL-6 trans-signaling may be involved in iron metabolism in the non-acute immune phase. Finally, after treated L8824 cells with JAK2 and STAT3 inhibitors, it was found that only tf and fpn1 were regulated by maIL-6 trans-signaling through the JAK2/STAT3 pathway. These findings provided novel insights into IL-6 trans-signaling regulatory mechanism in teleost, enriching our knowledge of fish immunity and iron metabolism.
Collapse
Affiliation(s)
- Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Guowen Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
4
|
Arena R, de Medeiros ACL, Secci G, Mancini S, Manuguerra S, Bovera F, Santulli A, Parisi G, Messina CM, Piccolo G. Effects of Dietary Supplementation with Honeybee Pollen and Its Supercritical Fluid Extract on Immune Response and Fillet's Quality of Farmed Gilthead Seabream ( Sparus aurata). Animals (Basel) 2022; 12:ani12060675. [PMID: 35327073 PMCID: PMC8944498 DOI: 10.3390/ani12060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The awareness of the correlation between administered diet, fish health and products’ quality has led to the increase in the research for innovative and functional feed ingredients. Herein, a plant-derived product rich in bioactive compounds, such as honeybee pollen (HBP), was included as raw (HBP) and as Supercritical Fluid Extracted (SFE) pollen (HBP_SFE) in the diet for gilthead seabream (Sparus aurata). The experiment was carried out on 90 fish with an average body weight of 294.7 ± 12.8 g, divided into five groups, according to the administration of five diets for 30 days: control diet (CTR); two diets containing HBP at 5% (P5) and at 10% (P10) level of inclusion; two diets containing HBP_SFE, at 0.5% (E0.5) and at 1% (E1) level of inclusion. Their effects were evaluated on 60 specimens (336.2 ± 11.4 g average final body weight) considering the fish growth, the expression of some hepatic genes involved in the inflammatory response (il-1β, il-6 and il-8) through quantitative real-time PCR, and physico-chemical characterization (namely color, texture, water holding capacity, fatty acid profile and lipid peroxidation) of the fish fillets monitored at the beginning (day 0) and after 110 days of storage at −20 °C. The results obtained showed that the treatment with diet E1 determined the up-regulation of il-1β, il-6, and il-8 (p < 0.05); however, this supplementation did not significantly contribute to limiting the oxidative stress. Nevertheless, no detrimental effect on color and the other physical characteristics was observed. These results suggest that a low level of HBP_SFE could be potentially utilized in aquaculture as an immunostimulant more than an antioxidant, but further investigation is necessary.
Collapse
Affiliation(s)
- Rosaria Arena
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Adja Cristina Lira de Medeiros
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
| | - Giulia Secci
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy;
| | - Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via Delpino 1, 80137 Napoli, Italy; (F.B.); (G.P.)
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
- Institute of Marine Biology, University Consortium of the Province of Trapani, Via Barlotta 4, 91100 Trapani, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
- Correspondence: ; Tel.: +39-055-2755590
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via Delpino 1, 80137 Napoli, Italy; (F.B.); (G.P.)
| |
Collapse
|
5
|
Wang J, Sun Q, Zhang J, Wang H, Liu H. Classical Signaling and Trans-Signaling Pathways Stimulated by Megalobrama amblycephala IL-6 and IL-6R. Int J Mol Sci 2022; 23:ijms23042019. [PMID: 35216135 PMCID: PMC8880141 DOI: 10.3390/ijms23042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a multipotent cytokine. IL-6 plays a dual role in inflammation through both classical signaling (IL-6 binds membrane IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds soluble IL-6R). However, the regulation of IL-6 activity, especially the regulation of signaling pathways and downstream genes mediated by IL-6 trans-signaling, remains largely unclear in teleost. Grass carp (Ctenopharyngodon idellus) hepatic (L8824) cells, kidney (CIK) cells, and primary hepatocytes were used as test models in this study. First, the biological activity of recombinant blunt snout bream (Megalobrama amblycephala) IL-6 (rmaIL-6) and sIL-6R (rmasIL-6R) was verified by quantitative PCR (qPCR) and western blot. The western blot results showed that rmaIL-6 significantly upregulated signal transducer and activator of transcription 3 (STAT3) phosphorylation in L8824 cells and primary hepatocytes, while rmaIL-6 in combination with rmasIL-6R (rmaIL-6+rmasIL-6R) significantly upregulated STAT3 phosphorylation in all types of cells. Furthermore, maIL-6 and maIL-6+rmasIL-6R could only induce extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation in L8824 cells and CIK cells, respectively. Therefore, IL-6 mainly acts by activating the janus kinase (JAK)/STAT3 pathway rather than the mitogen-activated protein kinase (MEK)/ERK pathway. Finally, the activation of the JAK2/STAT3 pathway was shown to be essential for the generation of socs3a and socs3b induced by IL-6 trans-signaling after treatment by JAK2/STAT3 pathway inhibitors (c188-9 and TG101348). These findings provide functional insights into IL-6 classical signaling and trans-signaling regulatory mechanisms in teleost, enriching our knowledge of fish immunology.
Collapse
Affiliation(s)
- Jixiu Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qianhui Sun
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jian Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
6
|
Yan Y, Dong R, Zhang C, Jiang Q. Interleukin-6 mediates lipopolysaccharide-inhibited irisin secretion in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:99-107. [PMID: 34965444 DOI: 10.1016/j.fsi.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Irisin is a novel immunomodulatory adipomyokine released upon cleavage of the fibronectin type III domain-containing protein 5 (FNDC5). We aimed to examine interleukin-6 (IL-6) role in mediating irisin secretion in immunologically challenged animal and primary head kidney leukocytes cultured from tilapia. Intraperitoneal injection of lipopolysaccharide (LPS) increased plasma IL-6 levels and decreased irisin secretion, suggesting a causal relationship between the induction of IL-6 and irisin. To address this relationship, we further produced recombinant tilapia IL-6 and the anti-tilapia IL-6 polyclonal antiserum. Intraperitoneal injection of recombinant tilapia IL-6 inhibited plasma irisin levels. Consistent with this observation, LPS-induced inhibition of plasma irisin was significantly attenuated by neutralizing circulating IL-6 using an IL-6 antiserum. Besides, IL-6 treatment could inhibit irisin secretion and FNDC5 gene expression in primary cultures of tilapia head kidney leukocytes. In parallel experiments, both LPS and IL-6 blockade of irisin secretion could be reverted by IL-6 receptor antagonism. At the level of the leukocyte, IL-6 treatment also triggered rapid phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), whereas IL-6-reduced irisin secretion could be negated by inhibiting the JAK2 and STAT3 signaling pathways. These results, as a whole, provide the first evidence that IL-6 is the mediator of LPS-inhibited irisin secretion via activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Chaoyi Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
7
|
Wang G, Sun Q, Wang H, Liu H. Identification and characterization of circRNAs in the liver of blunt snout bream (Megalobrama amblycephala) infected with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104185. [PMID: 34174243 DOI: 10.1016/j.dci.2021.104185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNAs, play an important role in regulating various biological processes. In the present study, circRNAs from the Megalobrama amblycephala liver were identified at five different time points post Aeromonas hydrophila using RNA-seq technology. A total of 250 circRNAs were identified, of which 106 were differentially expressed (DE) in ten pairwise comparisons. GO and KEGG analyses showed that the parental genes of DE circRNAs were enriched in phagocytosis, complement and coagulation cascades, and Fc gamma R-mediated phagocytosis pathways. According to ceRNA hypothesis, the interaction network of circRNAs, miRNAs and mRNAs was constructed. Moreover, WGCNA was conducted, and five specific modules significantly related to bacterial infection were identified. All the above results reveal the important role of circRNAs in immune response, which enriches the information of circRNAs in teleost, and helps to understand the immune response mechanism of M. amblycephala to A. hydrophila.
Collapse
Affiliation(s)
- Guowen Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Zhou QL, Xia D, Pan L, Wang J, Chen Q, Ge X, Sun C, Miao L, Lin Y, Liu B. Molecular cloning and expression mechanism of Mnp65 in Megalobrama amblycephala response to Aeromonas hydrophilia challenge. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111046. [PMID: 34352395 DOI: 10.1016/j.cbpa.2021.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/11/2023]
Abstract
p65 is one of the important subunits of the inflammation-related transcription factor NF-κB. In the present study, we cloned and identified the p65 from Megalobrama amblycephala (Mnp65) by homologous cloning and RACE technique. The full-length Mnp65 cDNA consisted of 2331 bp, and included one open reading frame encoding a 604-amino acid putative protein. The protein sequence included a DNA binding motif, a well conserved N-terminal Rel-homology domain (RHD), and a C-terminal IG-like plexins transcription (IPT). Mnp65 was closely related with the other p65 proteins of Cypriniformes and clearly distinct from that of Perciformes and Salmoniformes in terms of sequence homology. Mnp65 homodimer may interact with IκBα in the IPT domain based on the predicted 3D structure of IκBα/Mnp65 complex. Mnp65 was ubiquitously expressed in M. amblycephala tissues, and the highest levels were detected in muscle and liver. Intragastric infection with Aeromonas hydrophila caused respiratory burst and cytokine storm from 8 h to 48 h, showing significantly higher level of respiratory burst activities and significantly high cytokines levels, such as TNF-α, IL-1β, IL-6, IL-8 etc., compared to 0 h. In addition, the bacterial challenge downregulated the IkBα, and upregulated Mnp65 and TNF-α in the liver. IkBα-Mnp65 was regulated by the negative feedback of cytokine storm, to increase IkBα and decrease Mnp65. Then cytokine storm was relieved at 96 h. Finally, severe intestinal inflammation was observed from 24 h to 48 h after infection, characterized by extensive villous necrosis, epithelial hyperplasia and lymphocyte infiltration, all of which were relieved at 96 h. Taken together, Mnp65 plays a crucial role in the physiological response of teleost fish to bacterial infection.
Collapse
Affiliation(s)
- Qun-Lan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Jingyuan Wang
- Nanjing Alpha Feed Biological Technology Co., Ltd., Binhuai Avenue No.9, Nanjing, Jiangsu 211200, PR China
| | - Qian Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China.
| |
Collapse
|
9
|
Fu F, Wang L. Molecular cloning, characterization of JunB in Schizothorax prenanti and its roles in responding to Aeromonas hydrophila infection. Int J Biol Macromol 2020; 164:2788-2794. [DOI: 10.1016/j.ijbiomac.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 01/20/2023]
|
10
|
Condensed tannins enhanced antioxidant capacity and hypoxic stress survivability but not growth performance and fatty acid profile of juvenile Japanese seabass (Lateolabrax japonicus). Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Huang P, Cai J, Yu D, Tang J, Lu Y, Wu Z, Huang Y, Jian J. An IL-6 gene in humphead snapper (Lutjanus sanguineus): Identification, expression analysis and its adjuvant effects on Vibrio harveyi OmpW DNA vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 95:546-555. [PMID: 31704205 DOI: 10.1016/j.fsi.2019.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that plays important role in mediating the innate and adaptive immune responses against pathogen infection. In this study, an IL-6 homolog (Ls-IL6) was identified and characterized from humphead snapper, Lutjanus sanguineus. The full-length cDNA of Ls-IL6 was 1066 bp, containing an open reading frame (ORF) of 639 bp encoding 212 amino acids, 5' untranslated region(UTR) of 63 bp and 3' UTR of 605 bp. The predicted Ls-IL6 protein had typical motif of IL-6 family and shared high identities to teleost IL-6s. Ls-IL6 extensively expressed in various tissues, and the highest expression of Ls-IL6 was detected in head kidney, spleen and thymus. In vivo, the transcript levels of Ls-IL6 were significantly up-regulated in response to Vibrio harveyi infection. Moreover, the DNA plasmid containing the OmpW of V. harveyi together with the gene encoding Ls-IL6 were successfully constructed and administered to fish, the protective efficacy of Ls-IL6 was investigated. Compared with the pcDNA-OmpW group, the level of specific antibodies against V. harveyi increased in pcDNA-IL6-OmpW injected group. After V. harveyi infection, the pcDNA-IL6-OmpW vaccinated fish showed higher relative percent survival (76%) than the relative survival of fish immunized with pcDNA-OmpW (60%). These results indicated that Ls-IL6 was involved in immune response against V. harveyi infection and could be applied as a promising adjuvant for DNA vaccines against V. harveyi.
Collapse
Affiliation(s)
- Pujiang Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Fisheries Service and Aquatic Product Technology Extension Center, Shenzhen, PR China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, PR China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
12
|
Zhu K, Lu XJ, Chen J. The interleukin-6 regulates the function of monocytes/macrophages (MO/MФ) via the interleukin-6 receptor β in ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2019; 93:191-199. [PMID: 31326589 DOI: 10.1016/j.fsi.2019.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-6 (IL-6) is one of the most pleiotropic cytokines because of its wide range of effects on cells of the immune and non-immune systems in the body. However, the role of IL-6 in fish monocytes/macrophages (MO/MФ) is poorly understood. In this study, we cloned the cDNA sequence of the IL-6 gene from ayu (Plecoglossus altivelis) and demonstrated using a tissue distribution assay that ayu interleukin-6 (PaIL-6) mRNA is expressed in all tested tissues. Changes in expression were observed in immune tissues as well as in MO/MФ after a Vibrio anguillarum infection; subsequently, PaIL-6 was expressed and purified to prepare anti-PaIL-6 antibodies. Recombinant PaIL-6 protein (rPaIL-6) treatment enhanced pro-inflammatory cytokine expression. Ayu interleukin-6 receptor β (PaIL-6Rβ) knockdown resulted in decreased pro-inflammatory cytokine expression in MO/MФ treated with rPaIL-6, whereas no significant changes were observed after ayu interleukin-6 receptor α (PaIL-6Rα) knockdown in MO/MФ. PaIL-6 and PaIL-6Rβ knockdown in MO/MФ inhibited the phosphorylation of signal transducer and activator of transcription 1. Moreover, PaIL-6Rβ knockdown inhibited the phagocytic and bactericidal ability of ayu MO/MФ treated with rPaIL-6. These data indicate that PaIL-6 may be able to regulate the function of ayu MO/MФ.
Collapse
Affiliation(s)
- Kai Zhu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Ding M, Fan J, Wang W, Wang H, Liu H. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 89:43-51. [PMID: 30890434 DOI: 10.1016/j.fsi.2019.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Complement factor D (Df) is a serine protease, which can activate the alternative pathway by cleaving complement factor B, and involves in the innate defense against pathogens infection in teleost. In this study, we cloned, characterized the Df gene from blunt snout bream (Megalobrama amblycephala) (Mamdf), and examined its expression pattern and antimicrobial activity. The open reading frame (ORF) of Mamdf was 753 bp, encoding 250 amino acids with a molecular mass of 27.2 kDa. Mamdf consisted of a single serine protease trypsin superfamily domain, 3 substrate binding sites and 3 active sites, but no potential N-glycosylation site. Pairwise alignment showed that Mamdf shared the highest identity (94%) with grass carp (Ctenopharyngodon idellus). Phylogenetic analysis indicated that Mamdf and other vertebrate Df had a common ancestral origin. Mamdf structured with 4 introns and 5 exons. The Mamdf mRNA expressed relatively high at the intestine appearance stage during early development and constitutively expressed in various tissues with the highest expression in the kidney in healthy adults. After challenged with Aeromonas hydrophila, significant changes of Mamdf at both mRNA and protein levels in the kidney, spleen, liver and head-kidney were observed. The recombinant Mamdf protein showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria. The above results suggested the immune function of Mamdf, and would benefit further detailed Df function research in the immune process in teleost.
Collapse
Affiliation(s)
- Ming Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Fan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, Wang Y, Guo Z, Ye J. Interleukin-6 gets involved in response to bacterial infection and promotes antibody production in Nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:141-151. [PMID: 30142358 DOI: 10.1016/j.dci.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Interleukin 6 (IL-6), a pleiotropic cytokine, plays an important role in humoral immune response, not only inducing the differentiation of B cells into plasma cells, but also promoting antibody-secreting cells (ASCs) to produce antibodies. In this study, Nile tilapia (Oreochromis niloticus) IL-6 (OnIL-6) was identified and characterized at expression level in response to bacterial infection and promotion of antibody production. The open reading frame of OnIL-6 ORF is consisted of 663 bp encoding a polypeptide of 220 amino acids. The deduced OnIL-6 protein contained an IL-6/G-CSF family signature, two conserved cysteine, and four α-helix bundles, which was highly homologous to other species. Spatial mRNA expression analysis revealed that the highest expression of OnIL-6 was observed in the thymus. After in vivo challenges of lipopolysaccharide (LPS) and Streptococcus agalactia (S. agalactiae), OnIL-6 expressions were significantly up-regulated in head kidney and spleen. The similar up-regulation of OnIL-6 was observed in the head kidney and spleen leukocytes in vitro stimulation with LPS and S. agalactiae. In addition, inducement with the recombinant OnIL-6 ((r)OnIL-6) in vitro caused significant increases in expressions of both sIgM and mIgM. Moreover, the (r)OnIL-6 stimulation enhanced the secretion of sIgM (more especially in P50 plasma-like B cells) and the production of mIgM in P60 and P70 B cell subsets (resting B cells, activated B cells and plasmablast-like B cells) in vitro. Taken together, this study indicated that OnIL-6 might be involved in host defense against bacterial infection and promote the production of antibody in Nile tilapia.
Collapse
Affiliation(s)
- Xiufang Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuhong Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
15
|
Han Y, Sun X, Kuang D, Tong P, Lu C, Wang W, Li N, Chen Y, Wang X, Dai J, Zhang H. Characterization of tree shrew (Tupaia belangeri) interleukin-6 and its expression pattern in response to exogenous challenge. Int J Mol Med 2017; 40:1679-1690. [PMID: 29039460 PMCID: PMC5716431 DOI: 10.3892/ijmm.2017.3168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Tree shrews, one of the closest relatives of primates, have attracted increasing attention as a model of human diseases, particularly for viral infections. As the first line of defense against microbial pathogens, the innate immune system is crucial in tree shrews. Interleukin-6 (IL-6) is important in the pathophysiology of infection, inflammation and cancer, where it promotes disease development or sustains immune reactions. The present study aimed to obtain further insight into the tree shrew IL-6 (tsIL-6) system, and the function of tsIL-6 in the antiviral and antibacterial response. In the present study, the mRNA and genomic sequence of the tsIL-6 gene were characterized, and the tissue distribution and expression profile of this gene were analyzed in response to lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C) treatment. The full-length tsIL-6 mRNA consisted of 1,152 bp with an open reading frame of 627 bp encoding 208 amino acids, a 5′-untranslated region (UTR) of 62 bp, and a 3′-UTR of 436 bp. The genome sequence of the tsIL-6 gene was 5,265 bp in length, comprising of five exons and four introns. The predicted tsIL-6 protein contained a 25-amino-acid-long signal peptide and a conserved IL-6 domain. Phylogenetic analysis based on the coding sequences revealed that tsIL-6 was closely related to IL-6 in humans. Residues crucial for receptor binding were completely conserved in the tree shrew protein. Reverse transcription-polymerase chain reaction analysis revealed that tsIL-6 mRNA was expressed in all examined tissues of healthy tree shrews, with high levels in the muscle and spleen. Following poly I:C challenge, the expression levels of tsIL-6 were upregulated in four tissues associated with immune system, the liver, spleen, kidney and intestine. Taken together, the molecular and bioinformatics analyses based on the IL-6 sequence revealed that the tree shrew has a close phylogenetic association with humans. These results provide insight for future investigations on the structure and function of tsIL-6.
Collapse
Affiliation(s)
- Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan 650118, P.R. China
| | - Huatang Zhang
- Chongqing Research Center of Biomedicine and Medical Equipment, Chongqing Academy of Science and Technology, Chongqing 401123, P.R. China
| |
Collapse
|
16
|
Identification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala) Infected by Aeromonas hydrophila. Int J Mol Sci 2016; 17:ijms17121972. [PMID: 27898025 PMCID: PMC5187772 DOI: 10.3390/ijms17121972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that play key roles in regulation of various biological processes. In order to better understand the biological significance of miRNAs in the context of Aeromonas hydrophila infection in Megalobrama amblycephala, small RNA libraries obtained from fish liver at 0 (non-infection), 4, and 24 h post infection (poi) were sequenced using Illumina deep sequencing technology. A total of 11,244,207, 9,212,958, and 7,939,157 clean reads were obtained from these three RNA libraries, respectively. Bioinformatics analysis identified 171 conserved miRNAs and 62 putative novel miRNAs. The existence of ten randomly selected novel miRNAs was validated by RT-PCR. Pairwise comparison suggested that 61 and 44 miRNAs were differentially expressed at 4 and 24 h poi, respectively. Furthermore, the expression profiles of nine randomly selected miRNAs were validated by qRT-PCR. MicroRNA target prediction, gene ontology (GO) annotation, and Kyoto Encylopedia of Genes and Genomes (KEGG) analysis indicated that a variety of biological pathways could be affected by A. hydrophila infection. Additionally, transferrin (TF) and transferrin receptor (TFR) genes were confirmed to be direct targets of miR-375. These results will expand our knowledge of the role of miRNAs in the immune response of M. amblycephala to A. hydrophila infection, and facilitate the development of effective strategies against A. hydrophila infection in M. amblycephala.
Collapse
|