1
|
Zhang S, Lu Y, Liu Y, Wang M, Xu S, Li Y, Wu H, Pei Q, Yang L, Lu L, Xiong Y, Liu Y, Chen S, Yao Q, Kang Q, Li Y, Chen D, Zhang X, Tang N, Li Z. Neglected function of gastrin to reduce feeding in Siberian sturgeon (Acipenser baerii) via cholecystokinin receptor B. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:941-954. [PMID: 38381278 DOI: 10.1007/s10695-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.
Collapse
Affiliation(s)
- Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Yongpei Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Sichuan Fisheries School, 18# Dujuan Road, Chengdu, Chengdu, Sichuan, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hongwei Wu
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Qaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Yuxi Agricultural Vocational-Technical College, 41# Xiangjiazhuang, Yuxi, Yunnan, China
| | - Lu Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yixiao Xiong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Yao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Kang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
3
|
Cai X, Bao D, Hua R, Cai B, Wang L, Dong R, Hua L. A Comparative Study on the Distribution Pattern of Endocrine Cells in the Gastrointestinal Tract of Two Small Alpine Mammals, Plateau Zokor ( Eospalax baileyi) and Plateau Pika ( Ochotona curzoniae). Animals (Basel) 2023; 13:ani13040640. [PMID: 36830427 PMCID: PMC9951659 DOI: 10.3390/ani13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Endocrine cells can secrete a variety of gastrointestinal hormones that regulate gastrointestinal digestion and absorption, which, in turn, play an important role in animal growth, metabolism, and acclimation. The small alpine mammals, plateau zokor (Eospalax baileyi) and plateau pika (Ochotona curzoniae), live in a unique ecotope with cold, hypoxic environments and short plant-growing seasons, resulting in differential adaptive digestive strategies for foods. Studying the distribution pattern of endocrine cells in the gastrointestinal tract (GIT) of these two animals can lead to a better understanding of the survival strategies of animals in an alpine environment. In this study, we used histochemical and immunohistochemical methods to compare the distribution pattern of argyrophilic cells and the expression of 5-HT cells, Gas cells, and Glu cells in the GIT of the plateau zokor with those of the plateau pika. The results showed that these endocrine cells we studied were widely distributed in the gastrointestinal organs of both these small mammals, and their morphology and distribution location in the GIT were almost the same. However, there were significant differences in the distribution density of argyrophilic cells between different organs in the GIT. The distribution density of argyrophilic cells in the duodenum, jejunum, ileum, and rectum of plateau zokor was significantly lower than that of plateau pika (p < 0.05) and, in the cecum of plateau zokor, was significantly higher than that of plateau pika (p < 0.001). The positive expression of 5-HT cells in the corpus I, corpus II, and pylorus of the stomach, duodenum, ileum, and rectum of plateau zokor was significantly higher than that of plateau pika (p < 0.01). In addition, the positive expression of Glu cells in the cecum was significantly higher (p < 0.01) and in the duodenum and colon was significantly lower (p < 0.05) in the plateau zokor than in the plateau pika. We conclude that the distribution pattern of endocrine cells in the GIT is consistent with the respective animals' diets, with the plateau zokor feeding on high-fiber roots and plateau pika preferring to intake the aboveground parts of plants with lower fibers.
Collapse
|
4
|
Alves APC, Pereira RT, Rosa PV. Morphology of the digestive system in carnivorous freshwater dourado Salminus brasiliensis. JOURNAL OF FISH BIOLOGY 2021; 99:1222-1235. [PMID: 34085710 DOI: 10.1111/jfb.14821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The digestive system of teleost shows remarkable functional and morphological diversity. In this study, the digestive tract and accessory organs of dourado Salminus brasiliensis are characterized using anatomical, histological, histochemical and immunohistochemical analyses. The existence of taste buds bordered by microridges in the oesophagus of dourado was recorded for the first time, thus showing that the species drives food intake by either swallowing or rejecting the food item. The Y-shaped stomach of dourado consisted of cardiac, cecal and pyloric regions with tubular gastric glands registered solely in the cardiac and cecal segments. The intestine is a short N-shaped tube with two loops, an intestinal coefficient of 0.73. The structure of pyloric caeca is similar to that of the intestine wall, comprising tunica mucosa, tela submucosa, tunica muscularis and tunica serosa layers. Histochemical analyses revealed an increased incidence of goblet cells from the midgut to the hindgut segment. A well-developed enteric plexus of scattered nerve cell and fibres are found along the digestive tract, and the calcitonin gene-related peptide (CGRP) immunoreactive neurons and fibres were identified in the myenteric plexus from the oesophagus to the hindgut. The exocrine pancreas appears diffuse in the mesentery around the stomach, intestine and also reaches the liver, and the endocrine pancreas is organized as a few islets of Langerhans. The liver comprises three distinct, asymmetric lobes, and the portal triad arrangement was registered in this tissue.
Collapse
Affiliation(s)
- Angélica P C Alves
- Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil
| | - Raquel T Pereira
- Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil
| | - Priscila V Rosa
- Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil
| |
Collapse
|
5
|
Dezfuli BS, Maestri C, Lorenzoni M, Carosi A, Maynard BJ, Bosi G. The impact of Anguillicoloides crassus (Nematoda) on European eel swimbladder: histopathology and relationship between neuroendocrine and immune cells. Parasitology 2021; 148:612-622. [PMID: 33557973 PMCID: PMC10950382 DOI: 10.1017/s0031182021000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The swimbladder functions as a hydrostatic organ in most bony fishes, including the European eel, Anguilla anguilla. Infection by the nematode Anguillicoloides crassus impairs swimbladder function, significantly compromising the success of the eel spawning migration. Swimbladders from 32 yellow eels taken from Lake Trasimeno (Central Italy) were analysed by histopathology- and electron microscopy-based techniques. Sixteen eels (50%) harboured A. crassus in their swimbladders and intensity of infection ranged from 2 to 17 adult nematodes per organ (6.9 ± 1.6, mean ± s.e.). Gross observations of heavily infected swimbladders showed opacity and histological analysis found a papillose aspect to the mucosa and hyperplasia of the lamina propria, muscularis mucosae and submucosa. Inflammation, haemorrhages, dilation of blood vessels and epithelial erosion were common in infected swimbladders. In the epithelium of parasitized swimbladders, many empty spaces and lack of apical junctional complexes were frequent among the gas gland cells. In heavily infected swimbladders, we observed hyperplasia, cellular swelling and abundant vacuolization in the apical portion of the gas gland cells. Numerous mast cells and several macrophage aggregates were noticed in the mucosal layer of infected swimbladders. We found more nervous and endocrine elements immunoreactive to a panel of six rabbit polyclonal antibodies in infected swimbladders compared to uninfected.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Chiara Maestri
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Barbara J Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO80523, USA
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134Milan, Italy
| |
Collapse
|
6
|
Gilannejad N, Rønnestad I, Lai F, Olderbakk-Jordal AE, Gottlieb Almeida AP, Martínez-Rodríguez G, Moyano FJ, Yúfera M. Daily rhythms of intestinal cholecystokinin and pancreatic proteases activity in Senegalese sole juveniles with diurnal and nocturnal feeding. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110868. [PMID: 33316387 DOI: 10.1016/j.cbpa.2020.110868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The influence of diurnal and nocturnal feeding on daily rhythms of gut levels of cholecystokinin (CCK) and the activity of two key pancreatic proteases, trypsin and chymotrypsin, were examined in juveniles of Senegalese sole (Solea senegalensis), a species with nocturnal habits. Four feeding protocols were performed: P1) One morning meal; P2) Six meals during the light period; P3) Six meals during the dark period; and P4) 12 meals during 24 h. Daily activity patterns of both proteases were remarkably similar and showed a high correlation in all the experimental protocols. In P1, daily patterns of CCK and digestive enzymes showed a single maximum. In P2, CCK levels exhibited two peaks. Digestive enzymes activities showed slightly delayed peaks compared to CCK, although their daily fluctuations were not significant. In P3, intestinal CCK concentration exhibited two peaks at the end of light and dark periods, but only the second one was significant. The first maximum level of chymotrypsin activity occurred 4 h after the first CCK peak, while the second one coincided with the second CCK peak. Fluctuations of trypsin activity were not significant. In P4, CCK concentration showed three small peaks. Digestive enzymes daily fluctuations were not significant, although they showed an inverted trend with respect to CCK. The daily pattern of the gut CCK content in our study is in agreement with the anorexigenic function of this hormone. Our results support the existence of a negative feedback regulatory loop between CCK and pancreatic proteolytic enzymes in Senegalese sole juveniles.
Collapse
Affiliation(s)
- Neda Gilannejad
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain.
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | | | - Francisco J Moyano
- Depto. de Biología y Geología, Facultad de Ciencias, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Almería, 04120 Almería, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain
| |
Collapse
|
7
|
BARRIOS CARLOSE, SANTINÓN JUANJOSÉ, DOMITROVIC HUGOA, SÁNCHEZ SEBASTIÁN, HERNÁNDEZ DAVIDR. Localization and distribution of CCK-8, NPY, Leu-ENK-, and Ghrelin- in the digestive tract of Prochilodus lineatus (Valenciennes, 1836). ACTA ACUST UNITED AC 2020; 92:e20181165. [DOI: 10.1590/0001-3765202020181165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
8
|
Pereira RT, Nebo C, de Paula Naves L, Fortes-Silva R, Regina Cardoso de Oliveira I, Paulino RR, Drummond CD, Rosa PV. Distribution of goblet and endocrine cells in the intestine: A comparative study in Amazonian freshwater Tambaqui and hybrid catfish. J Morphol 2019; 281:55-67. [PMID: 31782555 DOI: 10.1002/jmor.21079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Goblet cells (GCs) and endocrine cells (ECs) play an important role in intestine physiology, and few studies currently exist for Amazonian fishes. This study aimed to quantify the distribution of GCs and ECs producing cholecystokinin-8 and neuropeptide Y, assessed by mucin histochemistry and peptides immunohistochemistry, in the intestine of two Amazonian species with different feeding habits Tambaqui (Colossosoma macropomum) and hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus), an omnivore and carnivore, respectively. A systematic literature review correlating feeding habit and GC and EC distribution was also included to contribute to the comparative study. The results of this study provided novel information about the gut cells of Tambaqui and hybrid catfish. Both, GCs and ECs can be found sweeping the entire intestine of Tambaqui and hybrid catfish although the cells can be more concentrated in certain segments. The GCs and ECs in Tambaqui were more uniformly distributed in the midgut segments (T1, T2, and T3). Unlike, in hybrid catfish GCs were more concentrated in the hindgut (C4) and ECs mainly in the two midgut segments (C1 and C2) of hybrid catfish. Based on the comparison between Tambaqui, hybrid catfish, and other fishes in the literature review, we suggest that cell distribution can be partially explained by feeding habits, carnivorous vs. omnivorous.
Collapse
Affiliation(s)
| | - Caroline Nebo
- Institute of Studies of Humid Tropic, Federal University of South and Southeast of Pará (UNIFESSPA), Xinguara, Brazil
| | - Luciana de Paula Naves
- Department of Veterinary, University of José do Rosário Vellano (UNIFENAS), Alfenas, Brazil
| | - Rodrigo Fortes-Silva
- Laboratory of Fish Nutrition and Feeding Behavior (AquaUFRB), Federal University of Bahia UFRB, Cruz das Almas, Brazil
| | | | - Renan Rosa Paulino
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Brazil
| | | | - Priscila Vieira Rosa
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
9
|
Butt ZD, O'Brien E, Volkoff H. Effects of fasting on the gene expression of appetite regulators in three Characiformes with different feeding habits (Gymnocorymbus ternetzi, Metynnis argenteus and Exodon paradoxus). Comp Biochem Physiol A Mol Integr Physiol 2019; 227:105-115. [DOI: 10.1016/j.cbpa.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
|