1
|
Fusani B, Ramos A, Cardoso SD, Gonçalves D. Vasotocin and oxytocin modulation of the endocrine and behavioral response to an aggressive challenge in male Siamese fighting fish. Horm Behav 2025; 171:105728. [PMID: 40209508 DOI: 10.1016/j.yhbeh.2025.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Aggressive behavior is an adaptive trait present across all taxa. However, the neuroendocrine mechanisms regulating it, particularly in fish, are not well understood. Oxytocin (OXT) and arginine vasotocin (VT) are known modulators of aggression, but their actions remain controversial. This study tested the possible modulation of endocrine and behavioral responses to an aggression challenge by these nonapeptides in Siamese fighting fish, Betta splendens, a species known for its intrinsic aggressiveness. Male B. splendens were injected with different dosages of either Manning compound or L-368,899, VT and OXT receptor antagonists respectively, and were exposed to a mirror challenge for 30 min. While all fish displayed high levels of aggression toward their mirror image, no differences were observed between control-injected and treatment fish. However, blocking VT inhibited the post-fight increase in plasma levels of the androgen 11-ketotestosterone (KT). To further investigate this result, testis tissue from males was incubated with and without VT and Manning compound, and KT levels were measured after 180 min. Results showed a direct effect of VT on in vitro KT secretion, indicating the presence of VT receptors in the testes of this species. Overall, the study does not support a modulatory role of VT or OXT in aggressive behavior, although VT might be implicated in the regulation of peripheral androgen response to aggression in B. splendens.
Collapse
Affiliation(s)
- Bianca Fusani
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Andreia Ramos
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Sara D Cardoso
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - David Gonçalves
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau; William James Center for Research, Ispa - Instituto Universitário, Lisbon, Portugal.
| |
Collapse
|
2
|
Zanardini M, Zhang W, Habibi HR. Arginine Vasotocin Directly Regulates Spermatogenesis in Adult Zebrafish ( Danio rerio) Testes. Int J Mol Sci 2024; 25:6564. [PMID: 38928267 PMCID: PMC11204076 DOI: 10.3390/ijms25126564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.
Collapse
Affiliation(s)
- Maya Zanardini
- Department of Biological Sciences, University of Calgary, Calgary, AB 2500, Canada;
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB 2500, Canada;
| |
Collapse
|
3
|
Rousseau K, Girardot F, Parmentier C, Tostivint H. The Caudal Neurosecretory System: A Still Enigmatic Second Neuroendocrine Complex in Fish. Neuroendocrinology 2024; 115:154-194. [PMID: 38228127 DOI: 10.1159/000536270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex, whose existence is specific to fishes. In teleosts, it consists of neurosecretory cells (Dahlgren cells) whose fibers are associated with a neurohemal terminal tissue (urophysis). In other actinopterygians as well as in chondrichthyes, the system is devoid of urophysis, so that Dahlgren cells end in a diffuse neurohemal region. Structurally, it has many similarities with the hypothalamic-neurohypophysial system. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most notable ones being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is still hypothetical, and its role is poorly understood. Observations and experimental data gave some evidences of a possible involvement in osmoregulation, stress, and reproduction. But one may question the benefit for fish to possess this second neurosecretory system, while the central hypothalamic-pituitary complex already controls such functions. As an introduction of our review, a brief report on the discovery of the CNSS is given. A description of its organization follows, and our review then focuses on the neuroendocrinology of the CNSS with the different factors it produces and secretes. The current knowledge on the ontogenesis and developmental origin of the CNSS is also reported, as well as its evolution. A special focus is finally given on what is known on its potential physiological roles.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, Neuroplasticité des comportements de reproduction, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, Paris, France
| |
Collapse
|
4
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Mennigen JA, Ramachandran D, Shaw K, Chaube R, Joy KP, Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (Lausanne) 2022; 13:1005863. [PMID: 36313759 PMCID: PMC9606234 DOI: 10.3389/fendo.2022.1005863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Divya Ramachandran
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Katherine Shaw
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Keerikkattil P. Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Vance L. Trudeau
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| |
Collapse
|
6
|
Rawat A, Chaube R, Joy KP. Air sac and gill vasotocin receptor gene expression in the air-breathing catfish Heteropneustes fossilis exposed to water and air deprivation conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:381-395. [PMID: 35166960 DOI: 10.1007/s10695-022-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Heteropneustes fossilis is a facultative air-breathing freshwater catfish and inhabits ponds, ditches, swamps, marshes and rivers that dry up in summers. It possesses a pair of unique tubular accessory respiratory organ (air sac), which is a modification of the gill chamber and enables it to live in water-air transition zones. In the catfish, three vasotocin (Vt) receptor gene paralogs viz., v1a1, v1a2 and v2a were identified for Vt actions. In the present study, the receptor gene transcripts were localized in the gill and air sac by in situ hybridization, and their expression levels in relation to water and air deprivation conditions were investigated by quantitative RT-PCR. The catfish were exposed to 1 h and 2 h in gonad inactive (resting) and gonad active (prespawning) phases. The gene paralogs showed overlapping distribution in the respiratory epithelium of primary and secondary lamellae of gills and reduced lamellae of the air sacs. In water deprivation (forced aerial mode of respiration) experiment, v2a expression showed a high fold increase in the air sac, which was unchanged or inhibited in the gill. Both v1a1 and v1a2 expression was significantly upregulated in the air sac but showed varied responses in the gill. The gill v1a1 expression was unchanged in the resting phase and modestly upregulated in the prespawning phase. The gill v1a2 expression was modestly upregulated at 1 h in both phases but unchanged at 2 h. In the air deprivation experiment (forced aquatic respiration), the v2a expression in the air sac was inhibited except for a mild stimulation at 1 h in the prespawning phase. In the gill, the v2a expression was stimulated with a steep upregulation at 2 h in the prespawning phase. Both v1a1 and v1a2 expression was significantly high in the gill but only modestly increased or unchanged in the air sac. The expression patterns point to a functional distinction; the V2 type receptor expression was higher in the air sac during forced aerial respiration, and the V1 type receptor expression was highly prominent in the gill during forced aquatic respiration. Water and air deprivation treatments caused a significant increase in plasma cortisol level, and the stimulation was higher in the water deprivation fish in the resting phase but equally prominent in the water and air deprivation groups in the prespawning phase. The results indicate that the changes in the expression patterns of Vt receptor genes may be a sequel to stress (hypoxic, metabolic and osmotic), and both Vt and cortisol may interact to counter the stress responses. This study shows that Vt has a new role in the control of air sac functions.
Collapse
Affiliation(s)
- A Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
7
|
Culbert BM, Regish AM, Hall DJ, McCormick SD, Bernier NJ. Neuroendocrine Regulation of Plasma Cortisol Levels During Smoltification and Seawater Acclimation of Atlantic Salmon. Front Endocrinol (Lausanne) 2022; 13:859817. [PMID: 35528002 PMCID: PMC9069684 DOI: 10.3389/fendo.2022.859817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Diadromous fishes undergo dramatic changes in osmoregulatory capacity in preparation for migration between freshwater and seawater. One of the primary hormones involved in coordinating these changes is the glucocorticoid hormone, cortisol. In Atlantic salmon (Salmo salar), cortisol levels increase during the spring smoltification period prior to seawater migration; however, the neuroendocrine factors responsible for regulating the hypothalamic-pituitary-interrenal (HPI) axis and plasma cortisol levels during smoltification remain unclear. Therefore, we evaluated seasonal changes in circulating levels of cortisol and its primary secretagogue-adrenocorticotropic hormone (ACTH)-as well as transcript abundance of the major regulators of HPI axis activity in the preoptic area, hypothalamus, and pituitary between migratory smolts and pre-migratory parr. Smolts exhibited higher plasma cortisol levels compared to parr across all timepoints but circulating ACTH levels were only elevated in May. Transcript abundance of preoptic area corticotropin-releasing factor b1 and arginine vasotocin were ~2-fold higher in smolts compared to parr in February through May. Smolts also had ~7-fold greater hypothalamic transcript abundance of urotensin 1 (uts-1a) compared to parr in May through July. When transferred to seawater during peak smolting in May smolts rapidly upregulated hypothalamic uts-1a transcript levels within 24 h, while parr only transiently upregulated uts-1a 96 h post-transfer. In situ hybridization revealed that uts-1a is highly abundant in the lateral tuberal nucleus (NLT) of the hypothalamus, consistent with a role in regulating the HPI axis. Overall, our results highlight the complex, multifactorial regulation of cortisol and provide novel insight into the neuroendocrine mechanisms controlling osmoregulation in teleosts.
Collapse
Affiliation(s)
- Brett M. Culbert
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Brett M. Culbert,
| | - Amy M. Regish
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Daniel J. Hall
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Stephen D. McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
- Department of Biology, University of Massachusetts, Amherst, Amherst, MA, United States
| | | |
Collapse
|
8
|
Aruna A, Lin CJ, Nagarajan G, Chang CF. Neurohypophysial Hormones Associated with Osmotic Challenges in the Brain and Pituitary of the Euryhaline Black Porgy, Acanthopagrus schlegelii. Cells 2021; 10:3086. [PMID: 34831308 PMCID: PMC8624723 DOI: 10.3390/cells10113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Our study showed differential expression of the arginine vasotocin (avt)/isotocin (it) in the brain and pituitary gland of the euryhaline black porgy (Acanthopagrus schlegelii) during osmotic stress. A decrease in serum osmolality and increased cortisol levels were observed after acute transfer from seawater (SW) to freshwater (FW). The increased expressions of avt, avt receptor (avtr: v1a), and isotocin receptor (itr: itr1) transcripts on day 1 and it and itr transcripts on days 7 and 30 were found in the brains and pituitary glands of FW fish. Increased levels of avt mRNA in the diencephalon and avtr mRNA in the pituitary together with serum cortisol on day 1 of FW exposure indicated activation of the hypothalamic-pituitary-interrenal (HPI) axis. The expression levels of avtr and itr after FW transfer were increased in the pituitary on days 7 and 30. Furthermore, in situ hybridization demonstrated spatially differential expression of avt and itr transcripts in nucleus preopticus parvocellularis of pars gigantocellularis (PMgc), magnocellularis (PMmc), and parvocellularis (PMpc) of the preoptic area (POA). Positive signals for avt and it were highly abundant in PMpc after FW exposure. The data suggest involvement of neurohypophysial hormones in the brain (telencephalon and diencephalon) and pituitary for osmotic stress.
Collapse
Affiliation(s)
- Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91230, Taiwan;
| | - Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Basic Sciences, PYD, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
9
|
Singh V, Chaube R, Joy KP. Vasotocin stimulates maturation-inducing hormone, oocyte maturation and ovulation in the catfish Heteropneustes fossilis: Evidence for a preferential calcium involvement. Theriogenology 2021; 167:51-60. [PMID: 33751970 DOI: 10.1016/j.theriogenology.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Arginine vasotocin (VT) is the basic neurohypophysial nonapeptide hormone in teleosts. VT is also distributed in the ovary of the catfish Heteropneustes fossilis and induces final oocyte maturation (FOM) and ovulation by stimulating the maturation-inducing hormone (MIH). The present study reports the effects of cAMP (0.5 mM), phosphodiesterase inhibitors (IBMX -0.5 mM and theophylline- 0.5 mM), the inositol triphosphate (IP3) receptor inhibitor heparin (10 μg/mL) and the Ca2+ chelator BAPTA-AM (25 μM) on VT (100 nM) - induced progestin stimulation, FOM and ovulation. Incubation of post-vitellogenic follicles with cAMP, IBMX and theophylline for 0, 8, 16 and 24 h stimulated basal secretion of progesterone (P4), 17-hydroxyprogesterone (17-P) and 17, 20β-dihydroxy-4-pregnen-3-one (MIH) in a duration-dependent manner. The incubation of the follicles with heparin stimulated P4 modestly, and 17-P and MIH levels in a duration-dependent manner. The incubation of the follicles with BAPTA-AM stimulated P4 and MIH levels marginally and 17-P robustly. The stimulation was in the order cAMP > IBMX > theophylline > heparin > BAPTA-AM. The incubation of the follicles with VT stimulated P4, 17-P, MIH, GVBD and ovulation in a duration-dependent manner. The co-incubations with VT and the test compounds inhibited the VT-induced stimulation of P4, 17-P and MIH levels in a time-dependent manner in the order heparin > BAPTA-AM > cAMP > IBMX > theophylline. Concurrently, the VT-induced stimulation of GVBD and ovulation were also inhibited by the test compounds in the same order. The results show that VT induces FOM and ovulation preferentially acting through Ca2+ pathway and a crosstalk between Ca2+ and cAMP signaling pathways seems to integrate the processes.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
10
|
Matsubara S, Shiraishi A, Osugi T, Kawada T, Satake H. The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates. eLife 2019; 8:49062. [PMID: 31573508 PMCID: PMC6786877 DOI: 10.7554/elife.49062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Ascidians are the closest living relatives of vertebrates, and their study is important for understanding the evolutionary processes of oocyte maturation and ovulation. In this study, we first examined the ovulation of Ciona intestinalis Type A by monitoring follicle rupture in vitro, identifying a novel mechanism of neuropeptidergic regulation of oocyte maturation and ovulation. Ciona vasopressin family peptide (CiVP) directly upregulated the phosphorylation of extracellular signal-regulated kinase (CiErk1/2) via its receptor. CiVP ultimately activated a maturation-promoting factor, leading to oocyte maturation via germinal vesicle breakdown. CiErk1/2 also induced expression of matrix metalloproteinase (CiMMP2/9/13) in the oocyte, resulting in collagen degradation in the outer follicular cell layer and liberation of fertile oocytes from the ovary. This is the first demonstration of essential pathways regulating oocyte maturation and ovulation in ascidians and will facilitate investigations of the evolutionary process of peptidergic regulation of oocyte maturation and ovulation throughout the phylum Chordata.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|