1
|
Cai JL, Zhang Y, Gao H, Wang Q, Huang W, Cai YJ, Jia WX, Wang JJ, Chen X, Sun HY. Molecular characterization, expression pattern and the function of TRAF2 from blood parrot Amphilophus citrinellus ×Vieja melanura response to LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110362. [PMID: 40280260 DOI: 10.1016/j.fsi.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) family is a critical signal transduction protein, and plays important roles in cell growth, apoptosis, and immune response, etc. In this study, molecular characteristics, expression patterns, and the role of TRAF2 in blood parrot Vieja synspila ♀ × Amphilophus citrinellus ♂, an important ornamental fish, were explored response to lipopolysaccharide (LPS) challenge. The full length of blood parrot TRAF2 was 2725 bp, with an open reading frame (ORF) of 1551 bp encoding 516 amino acids, and a molecular weight of 58.58 kDa. Blood parrot TRAF2 contained four conserved domains: RING, TRAF-type zinc finger, TRAF_BIRC3_bd, and MATH (Meprin and TRAF-C homology). Analysis of phylogenetic relationships showed that TRAF2 were conserved in different species, indicating that its role might be similar. Blood parrot TRAF2 mRNA could be detected in all of the tissues examined, and was distributed in both the cytoplasm and nucleus. The expression of blood parrot TRAF2 was up-regulated during LPS challenge. Overexpression of TRAF2 could significantly inhibit the activities of nuclear factor κB (NF-κB) and activated protein 1 (AP-1), and reduce the ratio of Bax/Bcl-2. This study indicated that the TRAF2 might play important roles in organisms during pathogen infection.
Collapse
Affiliation(s)
- Jie-Li Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Jie Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Xin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun-Jie Wang
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China.
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhang D, Zheng Y, Wang X, Wang D, Luo H, Zhu W, Zhang W, Chen Z, Shao J. Effects of Dietary Fish Meal Replaced by Fish Steak Meal on Growth Performance, Antioxidant Capacity, Intestinal Health and Microflora, Inflammatory Response, and Protein Metabolism of Large Yellow Croaker Larimichthys crocea. AQUACULTURE NUTRITION 2023; 2023:2733234. [PMID: 38152156 PMCID: PMC10752682 DOI: 10.1155/2023/2733234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Although fish steak meal (FSM) is a potentially available protein source, its efficiency as a fish meal (FM) substitute remains unclear to date. To this end, this study was carried out to determine the effects of dietary FM replaced by FSM on growth performance, antioxidant capacity, intestinal health and microflora, inflammatory response, and protein metabolism of large yellow croaker. Five isolipidic and isonitrogenous diets were formulated by substituting FM with FSM at levels of 0% (FSM0, control diet), 25% (FSM25), 50% (FSM50), 75% (FSM75), and 100% (FSM100), and were fed to juvenile large yellow croaker for 8 weeks. Compared with the control diet, the replacement of 25% dietary FM with FSM did not markedly alter the weight gain (WG) and specific growth rate (SGR). When the FM substitution level was over 25%, WG and SGR markedly reduced. The intestinal structure observation found that the FSM75 and FSM100 diets markedly decreased villus height, villus width, and muscle thickness of the anterior intestine. The FSM75 and FSM100 diets significantly decreased enzyme activities of amylase (AMS), lipase (LPS), trypsin, catalase (CAT), and total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), and increased the malondialdehyde (MDA) content in the liver of large yellow croaker. The mRNA expression levels of intestinal barrier and inflammatory response-related genes suggested that the FSM50, FSM75, and FSM100 diets significantly decreased the mRNA abundances of intestinal barrier-related genes and anti-inflammatory response-related genes, and increased the mRNA abundances of proinflammatory gene il-6 in the anterior intestine. The compositions of intestinal microflora displayed that the FSM50, FSM75, and FSM100 diets decreased relative abundances of Firmicutes phylum and increased relative abundances of Proteobacteria phylum. In addition, the results of protein expression levels showed that the phosphorylation level of mammalian target of rapamycin (mTOR) and 4E-binding protein 1 (4E-BP1) in FSM75 and FSM100 groups were markedly reduced. In conclusion, FSM can replace up to 25% dietary FM without compromising the growth performance, intestinal health, and protein metabolism of the large yellow croaker.
Collapse
Affiliation(s)
- Dianguang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzong Zheng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejuan Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongjie Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Zhu
- Fuzhou Haima Feed Co. Ltd., Fuzhou 350311, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fuzhou Institute of Oceanography, Fuzhou 350108, China
| |
Collapse
|
3
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|