1
|
Huang M, Yin J, Wan Y, Duan R. The influences of pulse exposure versus continuous exposure to cadmium are different: Mechanisms elucidated from motor behavior and brain in amphibian larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118412. [PMID: 40424726 DOI: 10.1016/j.ecoenv.2025.118412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 05/11/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Cadmium (Cd) is a common environmental pollutant in aquatic ecosystems, often present in the form of pulses. However, the toxic effects of Cd on aquatic animals have been found to come primarily from continuous exposure, and there is little research on the effects of pulse exposure on animals. Here, the different effects of Cd exposure patterns on the motor behavior, brain histology and brain metabolism of Pelophylax nigromaculatus tadpoles (20 per parallel group) were explored. Our study showed that both continuous (CECd) and pulse exposure of Cd (PECd) led to a significant reduction in the moving distance (57.7 % vs 42.5 %), average speed (57.7 % vs 42.6 %) and moving frequency (45.3 % vs 7.9 %). Furthermore, both CECd and PECd led to the expansion and enlargement of the perivascular space of the cerebrum. Cd exposure increased the blood-brain barrier permeability, leading to brain cell swelling, and destroyed brain granular cells, Purkinje cells and brain gliacytes. Non-targeted metabolomics found a significant effect of Cd exposure on nucleic acid and amino acid metabolism. The most significant increases were observed in adenosine (99.4 %), threonine (47.9 %), citrulline (123.9 %), and erythrose 4p (184.1 %). It is noteworthy that the CECd exerted a more pronounced influence on brain structure, metabolism, and movement behaviour than the PECd. This phenomenon can be attributed to the fact that in PECd exposure, the individual's intermittent exposure to clean water partially offsets the effects of previous Cd exposure.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, Hunan 417000, China
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, Hunan 417000, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, Hunan 417000, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, Hunan 417000, China.
| |
Collapse
|
2
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Wang L, Sun Y, Du L, Wang Q, Zhan M, Li S, Xiao X. Daily koumiss has positive regulatory effects on blood lipids and immune system: A metabolomics study. Heliyon 2024; 10:e36429. [PMID: 39253138 PMCID: PMC11382052 DOI: 10.1016/j.heliyon.2024.e36429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Koumiss, a traditional Mongolian beverage, is believed to possess high nutritional value and potential medical benefits. However, there is a lack of comprehensive research on its potential impact on the human body. Metabolomics, as a sensitive approach in systems biology, offers a new avenue for studying the overall effects of koumiss. In this work, metabolomics was utilized to identify potential biomarkers and pathways associated with koumiss using UPLC-MS detection, pattern recognition analysis, pathway enrichment, network pharmacology. The findings indicated that koumiss exerts a beneficial regulatory influence on lipid metabolism, neurotransmitters, hormones, phospholipids and arachidonic acid metabolism, besides up regulating the content of nutrients. It could reduce the risks of dyslipidemia and inflammatory responses. This study confirmed the benign regulatory effect of koumiss on normal organism from the perspective of endogenous metabolites, and provided objective support for the promotion and application of this ethnic food.
Collapse
Affiliation(s)
- Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfang Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhan
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Comesaña S, Antomagesh F, Soengas JL, Blanco AM, Vijayan MM. Valine administration in the hypothalamus alters the brain and plasma metabolome in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2024; 327:R261-R273. [PMID: 38881412 DOI: 10.1152/ajpregu.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Central administration of valine has been shown to cause hyperphagia in fish. Although mechanistic target of rapamycin (mTOR) is involved in this response, the contributions to feed intake of central and peripheral metabolite changes due to excess valine are unknown. Here, we investigated whether intracerebroventricular injection of valine modulates central and peripheral metabolite profiles and may provide insights into feeding response in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were administered an intracerebroventricular injection of valine (10 µg·µL-1 at 1 μL·100·g-1 body wt), and the metabolite profile in plasma, hypothalamus, and rest of the brain (composing of telencephalon, optic tectum, cerebellum, and medulla oblongata) was carried out by liquid chromatography-mass spectrometry (LC/MS)-based metabolomics. Valine administration led to a spatially distinct metabolite profile at 1 h postinjection in the brain: enrichment of amino acid metabolism and energy production pathways in the rest of the brain but not in hypothalamus. This suggests a role for extrahypothalamic input in the regulation of feed intake. Also, there was enrichment of several amino acids, including tyrosine, proline, valine, phenylalanine, and methionine, in plasma in response to valine. Changes in liver transcript abundance and protein expression reflect an increased metabolic capacity, including energy production from glucose and fatty acids, and a lower protein kinase B (Akt) phosphorylation in the valine group. Altogether, valine intracerebroventricular administration affects central and peripheral metabolism in rainbow trout, and we propose a role for the altered metabolite profile in modulating the feeding response to this branched-chain amino acid.NEW & NOTEWORTHY Valine causes hyperphagia in fish when it is centrally administered; however, the exact mechanisms are far from clear. We tested how intracerebroventricular injection of valine in rainbow trout affected the brain and plasma metabolome. The metabolite changes in response to valine were more evident in the rest of the brain compared with the hypothalamus. Furthermore, we demonstrated for the first time that central valine administration affects peripheral metabolism in rainbow trout.
Collapse
Affiliation(s)
- Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Ayelén M Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|
5
|
Yu Z, Han J, Li L, Zhang Q, Chen A, Chen J, Wang K, Jin J, Li H, Chen G. Chronic triclosan exposure induce impaired glucose tolerance by altering the gut microbiota. Food Chem Toxicol 2024; 183:114305. [PMID: 38052405 DOI: 10.1016/j.fct.2023.114305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Triclosan (TCS) is an antimicrobial compound incorporated into more than 2000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, thereby raising concerns about its impact on human health and environmental pollution. Here, we demonstrated that 20 weeks' exposure of TCS drove the development of glucose intolerance by inducing compositional and functional alterations in intestinal microbiota in rats. Fecal-transplantation experiments corroborated the involvement of gut microbiota in TCS-induced glucose-tolerance impairment. 16S rRNA gene-sequencing analysis of cecal contents showed that TCS disrupted the gut microbiota composition in rats and increased the ratio of Firmicutes to Bacteroidetes. Cecal metabolomic analyses detected that TCS altered host metabolic pathways that are linked to host glucose and amino acid metabolism, particularly branched-chain amino acid (BCAA) biosynthesis. BCAA measurement confirmed the increase in serum BCAAs in rats exposed to TCS. Western blot and immunostaining results further confirmed that elevated BCAAs stimulated mTOR, a nutrient-sensing complex, and following IRS-1 serine phosphorylation, resulted in insulin resistance and glucose intolerance. These results suggested that TCS may induce glucose metabolism imbalance by regulating BCAA concentration by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Junyong Han
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Lisha Li
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Qiufeng Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ayun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Jinyan Chen
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Kun Wang
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Jingjun Jin
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Liang X, Li X, Jin Y, Wang Y, Wei C, Zhu Z. Effect of Aerobic Exercise on Intestinal Microbiota with Amino Acids and Short-Chain Fatty Acids in Methamphetamine-Induced Mice. Metabolites 2023; 13:metabo13030361. [PMID: 36984800 PMCID: PMC10055719 DOI: 10.3390/metabo13030361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
This study aimed to investigate the changes in intestinal homeostasis and metabolism in mice after methamphetamine (MA) administration and exercise intervention. In this study, male C57BL/B6J mice were selected to establish a model of methamphetamine-induced addiction, and the gut microbiota composition, short-chain fatty acids (SCFAs), and amino acid levels were assessed by 16S rRNA, liquid chromatography–tandem mass spectrometry, and gas chromatography–tandem mass spectrometry, respectively. The results showed that 23 dominant microbiota, 12 amino acids, and 1 SCFA were remarkably higher and 9 amino acids and 6 SCFAs were remarkably lower in the exercise model group than in the control group. Among the top 10 markers with opposite trends between the exercise intervention group and model group, the differential microbiomes included Oscillibacter, Alloprevotella, Colidextribacter, Faecalibaculum, Uncultured, Muribaculaceae, and Negativibacillus; amino acids included proline; and SCFAs included isovaleric acid and pentanoic acid. Proline was negatively correlated with Negativibacillus and positively correlated with pentanoic acid. The results suggested that moderate-intensity aerobic exercise may modulate changes in the composition of the gut microbiota and the levels of amino acids and SCFAs induced by MA administration.
Collapse
Affiliation(s)
- Xin Liang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-135-5014-6822
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yi Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Changling Wei
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhicheng Zhu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| |
Collapse
|
7
|
Comesaña S, Chivite M, Blanco AM, Alborja-Valado M, Calo J, Conde-Sieira M, Soengas JL. Involvement of Mechanistic Target of Rapamycin (mTOR) in Valine Orexigenic Effects in Rainbow Trout. AQUACULTURE NUTRITION 2022; 2022:7509382. [PMID: 36860456 PMCID: PMC9973124 DOI: 10.1155/2022/7509382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 09/14/2022] [Indexed: 06/18/2023]
Abstract
This study was aimed at clarifying the importance of a mechanistic target of rapamycin (mTOR) in the central orexigenic effect of valine in fish. For this, rainbow trout (Oncorhynchus mykiss) were intracerebroventricularly (ICV) injected with valine alone or in the presence of rapamycin as the mTOR inhibitor, and two experiments were performed. In the first experiment, we evaluated feed intake levels. In the second experiment, we evaluated in the hypothalamus and telencephalon the following: (1) the phosphorylation status of mTOR and its downstream effectors ribosomal protein S6 and p70 S6 kinase 1 (S6K1), (2) the abundance and phosphorylation status of transcription factors involved in appetite regulation, and (3) the mRNA levels of key neuropeptides associated with homeostatic regulation of feed intake in fish. Rising central levels of valine clearly resulted in an orexigenic response in rainbow trout. This response occurred in parallel with mTOR activation in both the hypothalamus and telencephalon, as supported by depressant changes in proteins involved in mTOR signalling (S6 and S6K1). Also, these changes disappeared in the presence of rapamycin. However, it is not clear which precise mechanisms link the activation of mTOR and the alteration in feed intake levels since we did not observe changes in mRNA levels of appetite-regulatory neuropeptides as well as in the phosphorylation status and levels of integrative proteins.
Collapse
Affiliation(s)
- Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Ayelén M. Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - María Alborja-Valado
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - José L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
8
|
Zhang J, Yang J, Luo Y, Li J, Gong T, Huang S, Xiong Y, Jiang X. Determination of 23 related analytes in bone marrow fluid and hippocampus of C57BL/6 mice on cerebral ischemia-reperfusion injury by HPLC-FLD. Biomed Chromatogr 2022; 36:e5435. [PMID: 35763335 DOI: 10.1002/bmc.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
The study of brain diseases has long been of interest to researchers worldwide, and stroke is the third leading cause of death that threatens human health. At the same time, a cerebral ischemia-reperfusion injury is closely associated with high rates of disability and mortality. The conditions of the 6-Aminoquinolyl N-hydroxysccinimidyl carbamate (AQC) method for the derivatization of amino acids in the bone marrow fluid and hippocampus of C57BL/6 mice with cerebral ischemia/reperfusion injury were explored and optimized, such as the column temperature, concentration of derivatization reagents, and mobile phase concentration were investigated and optimized. The mobile phase consisted of 20 mM sodium acetate solution (phosphoric acid to adjust pH 5.0) and 60% acetonitrile solution at the flow rate of 1 mL•min-1 . The 23 analytes were separated and determined in a gradient elution procedure; the correlation coefficient r was greater than 0.9990 in the range of 0.1-8.0 μg•mL-1 . The results showed that the content of relevant analytes was significantly changed in the cerebral ischemia-reperfusion injury model, the method was suitable for the simultaneous determination of 23 amino acids in bone marrow fluid and hippocampus of C57BL/6 mice.
Collapse
Affiliation(s)
- Jing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Key Laboratory of Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Jiansha Li
- Jiangsu Hengrui Pharmaceutical Co.Ltd., Chongqing, China
| | - Tao Gong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Suqiong Huang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yan Xiong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Takeda S, Kaji K, Nishimura N, Enomoto M, Fujimoto Y, Murata K, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Angiotensin Receptor Blockers Potentiate the Protective Effect of Branched-Chain Amino Acids on Skeletal Muscle Atrophy in Cirrhotic Rats. Mol Nutr Food Res 2021; 65:e2100526. [PMID: 34687151 DOI: 10.1002/mnfr.202100526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/11/2021] [Indexed: 12/11/2022]
Abstract
SCOPE This study investigated the combined effect of the angiotensin II (AT-II) receptor blocker losartan and branched-chain amino acids (BCAAs) on skeletal muscle atrophy in rats with cirrhosis and steatohepatitis. METHOD AND RESULTS Fischer 344 rats are fed a choline-deficient l-amino acid-defined (CDAA) diet for 12 weeks and treated with oral losartan (30 mg kg-1 day-1 ) and/or BCAAs (Aminoleban EN, 2500 mg kg-1 day-1 ). Treatment with losartan and BCAAs attenuated hepatic inflammation and fibrosis and improved skeletal muscle atrophy and strength in CDAA-fed rats. Both agents reduced intramuscular myostatin and pro-inflammatory cytokine levels, resulting in inhibition of the ubiquitin-proteasome system (UPS) through interference with the SMAD and nuclear factor-kappa B pathways, respectively. Losartan also augmented the BCAA-mediated increase of skeletal muscle mass by promoting insulin growth factor-I production and mitochondrial biogenesis. Moreover, losartan decreased the intramuscular expression of transcription factor EB (TFEB), a transcriptional inducer of E3 ubiquitin ligase regulated by AT-II. In vitro assays illustrated that losartan promoted mitochondrial biogenesis and reduced TFEB expression in AT-II-stimulated rat myocytes, thereby potentiating the inhibitory effects of BCAAs on the UPS and caspase-3 cleavage. CONCLUSION These results indicate that this regimen could serve as a novel treatment for patients with sarcopenia and liver cirrhosis.
Collapse
Affiliation(s)
- Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|