1
|
Ye Z, Elaswad A, Su B, Alsaqufi A, Shang M, Bugg WS, Qin G, Drescher D, Li H, Qin Z, Odin R, Makhubu N, Abass N, Dong S, Dunham R. Reversible Sterilization of Channel Catfish via Overexpression of Glutamic Acid Decarboxylase Gene. Animals (Basel) 2024; 14:1899. [PMID: 38998011 PMCID: PMC11240427 DOI: 10.3390/ani14131899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The confinement of transgenic fish is essential to prevent their escape and reproduction in natural ecosystems. Reversible transgenic sterilization is a promising approach to control the reproduction of transgenic fish. Therefore, the present study was conducted to develop a reversibly sterile channel catfish (Ictalurus punctatus) via the transgenic overexpression of the goldfish (Carassius auratus) glutamic acid decarboxylase (GAD) gene driven by the common carp (Cyprinus carpio) β-actin promoter to disrupt normal gamma-aminobutyric acid (GABA) regulation. Three generations of GAD-transgenic fish were produced. All studied generations showed repressed reproductive performance; however, this was not always statistically significant. In F1, 5.4% of the transgenic fish showed a sexual maturity score ≥ 4 (maximum = 5) at five years of age, which was lower (p = 0.07) than that of the control group (16.8%). In the spawning experiments conducted on F1 transgenic fish at six and nine years of age, 45.5% and 20.0% of fish spawned naturally, representing lower values (p = 0.09 and 0.12, respectively) than the percentages in the sibling control fish of the same age (83.3% and 66.7%, respectively). Four of six pairs of the putative infertile six-year-old fish spawned successfully after luteinizing hormone-releasing hormone analog (LHRHa) therapy. Similar outcomes were noted in the three-year-old F2 fish, with a lower spawning percentage in transgenic fish (20.0%) than in the control (66.7%). In one-year-old F2-generation transgenic fish, the observed mean serum gonadotropin-releasing hormone (GnRH) levels were 9.23 ± 2.49 and 8.14 ± 2.21 ng/mL for the females and males, respectively. In the control fish, the mean levels of GnRH were 11.04 ± 4.06 and 9.03 ± 2.36 ng/mL for the females and males, respectively, which did not differ significantly from the control (p = 0.15 and 0.27 for females and males, respectively). There was no significant difference in the estradiol levels of the female transgenic and non-transgenic fish in the one- and four-year-old F2-generation fish. The four-year-old F2-generation male transgenic fish exhibited significantly (p < 0.05) lower levels of GnRH and testosterone than the control fish. In conclusion, while overexpressing GAD repressed the reproductive abilities of channel catfish, it did not completely sterilize transgenic fish. The sterilization rate might be improved through selection in future generations.
Collapse
Affiliation(s)
- Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman
| | - Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Ahmed Alsaqufi
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mei Shang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - William S. Bugg
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Guyu Qin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Drescher
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Fisheries Department, Muckleshoot Indian Tribe, Auburn, WA 98092, USA
| | - Hanbo Li
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Zhenkui Qin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Ramjie Odin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- College of Fisheries, Mindanao State University-Maguindanao, Datu Odin Sinsuat 9601, Philippines
| | - Nonkonzo Makhubu
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Nermeen Abass
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Agricultural Botany, Faculty of Agriculture Saba-Basha, Alexandria University, Alexandria 21531, Egypt
| | - Sheng Dong
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| |
Collapse
|
2
|
Qiao L, Xu J, Yang Z, Li X, Chen L, Sun H, Mu Y. Residual Risk of Avermectins in Food Products of Animal Origin and Their Research Progress on Toxicity and Determination. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lu Qiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jinhua Xu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhen Yang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xingyang Li
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Lu Chen
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Huiwu Sun
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| |
Collapse
|