1
|
Wang J, Sun Q, Zhang J, Wang H, Liu H. Classical Signaling and Trans-Signaling Pathways Stimulated by Megalobrama amblycephala IL-6 and IL-6R. Int J Mol Sci 2022; 23:ijms23042019. [PMID: 35216135 PMCID: PMC8880141 DOI: 10.3390/ijms23042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a multipotent cytokine. IL-6 plays a dual role in inflammation through both classical signaling (IL-6 binds membrane IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds soluble IL-6R). However, the regulation of IL-6 activity, especially the regulation of signaling pathways and downstream genes mediated by IL-6 trans-signaling, remains largely unclear in teleost. Grass carp (Ctenopharyngodon idellus) hepatic (L8824) cells, kidney (CIK) cells, and primary hepatocytes were used as test models in this study. First, the biological activity of recombinant blunt snout bream (Megalobrama amblycephala) IL-6 (rmaIL-6) and sIL-6R (rmasIL-6R) was verified by quantitative PCR (qPCR) and western blot. The western blot results showed that rmaIL-6 significantly upregulated signal transducer and activator of transcription 3 (STAT3) phosphorylation in L8824 cells and primary hepatocytes, while rmaIL-6 in combination with rmasIL-6R (rmaIL-6+rmasIL-6R) significantly upregulated STAT3 phosphorylation in all types of cells. Furthermore, maIL-6 and maIL-6+rmasIL-6R could only induce extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation in L8824 cells and CIK cells, respectively. Therefore, IL-6 mainly acts by activating the janus kinase (JAK)/STAT3 pathway rather than the mitogen-activated protein kinase (MEK)/ERK pathway. Finally, the activation of the JAK2/STAT3 pathway was shown to be essential for the generation of socs3a and socs3b induced by IL-6 trans-signaling after treatment by JAK2/STAT3 pathway inhibitors (c188-9 and TG101348). These findings provide functional insights into IL-6 classical signaling and trans-signaling regulatory mechanisms in teleost, enriching our knowledge of fish immunology.
Collapse
Affiliation(s)
- Jixiu Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qianhui Sun
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jian Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|