Xu S, Ma X, Xiao Y, Zhang T, Ma C, Ma Z. 7,8-DHF Modulates Aggressive Behavior in
Sebastes schlegelii: Phenotype-Dependent Responses in Aggression-Dimorphic Individuals.
Animals (Basel) 2025;
15:1463. [PMID:
40427340 PMCID:
PMC12108537 DOI:
10.3390/ani15101463]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Aggressive behavior is regulated by intricate neural circuits and molecular mechanisms, notably through the interaction of brain-derived neurotrophic factor (BDNF) with its receptor, tropomyosin receptor kinase B (TrkB), which influences neuroplasticity and related behavioral phenotypes. We investigate the role of the BDNF signaling pathway in fish aggression using juvenile black rockfish (Sebastes schlegelii), which exhibit distinct aggressive phenotypes. The TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) was administered intraperitoneally at doses of 1.25, 2.5, and 5 mg/kg to assess its effects on the behavioral characteristics of high-aggression (H-agg) and low-aggression (L-agg) phenotypes. Our findings indicate the following: (1) The effects of 7,8-DHF are dose-dependent, with 2.5 mg/kg identified as the effective threshold dose for H-agg individuals; (2) in the H-agg group, this dose significantly reduced locomotor acceleration, angular velocity, and activity frequency, while prolonging the first movement latency; (3) in the L-agg group, only angular velocity was significantly decreased with the 2.5 mg/kg treatment, with no significant changes observed in other behavioral parameters. This study provides the first evidence for differential behavioral responses to 7,8-DHF in S. schlegelii, demonstrating dose-dependent aggression suppression in H-agg phenotypes and threshold-specific responses in L-agg phenotypes. These insights into the neuro-molecular basis of fish aggression can guide phenotype-specific management in aquaculture, potentially improving stress management, reducing injuries and mortality, and boosting productivity.
Collapse