1
|
Olsen KC, Escareno Medina LD, Barreto FS, Edmands S, Burton RS. Optimal outbreeding is shaped during larval life history in the splash pool copepod Tigriopus californicus. J Hered 2025; 116:159-169. [PMID: 39058401 DOI: 10.1093/jhered/esae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Inbreeding and outbreeding depression are dynamic forms of selection critical to mating system evolution and the efficacy of conservation biology. Most evidence on how the relative severity and timing of these forces are shaped is confined to self-fertilization, distant outcrossing, and intermediate "optimal outcrossing" in hermaphrodites. We tested the notion that closed population demographics may reduce and delay the costs of inbreeding relative to distant outbreeding in an intertidal copepod with separate sexes and a biphasic larval/post-metamorphic life history (Tigriopus californicus). At three lifecycle stages (fecundity, metamorphosis, and post-metamorphosis), we quantified the effects of inbreeding and outbreeding in crosses with varying degrees of recent common ancestry. Although inbreeding and outbreeding depression have distinct genetic mechanisms, both manifested the same stage-specific consequences for fitness. Inbreeding and outbreeding depression were not apparent for fecundity, post-metamorphic survival, sex ratio, or the ability to acquire mates, but inbreeding between full siblings and outbreeding between interpopulation hybrids reduced the fraction of offspring that completed metamorphosis by 32% and 47%, respectively. On average, the effects of inbreeding on metamorphic rate were weaker and nearly twice as variable among families than those of outbreeding, suggesting genetic load was less pervasive than the incompatibilities accrued between divergent populations. Overall, our results indicate the transition from larval to juvenile life stages is markedly susceptible to both inbreeding and outbreeding depression in T. californicus. We suggest stage-specific selection acting concurrently with the timing of metamorphosis may be an instrumental factor in shaping reproductive optima in species with complex life histories.
Collapse
Affiliation(s)
- Kevin C Olsen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Luis D Escareno Medina
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
3
|
Montooth KL, Dhawanjewar AS, Meiklejohn CD. Temperature-Sensitive Reproduction and the Physiological and Evolutionary Potential for Mother's Curse. Integr Comp Biol 2020; 59:890-899. [PMID: 31173136 PMCID: PMC6797906 DOI: 10.1093/icb/icz091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Strict maternal transmission of mitochondrial DNA (mtDNA) is hypothesized to permit the accumulation of mitochondrial variants that are deleterious to males but not females, a phenomenon called mother’s curse. However, direct evidence that mtDNA mutations exhibit such sexually antagonistic fitness effects is sparse. Male-specific mutational effects can occur when the physiological requirements of the mitochondria differ between the sexes. Such male-specific effects could potentially occur if sex-specific cell types or tissues have energy requirements that are differentially impacted by mutations affecting energy metabolism. Here we summarize findings from a model mitochondrial–nuclear incompatibility in the fruit fly Drosophila that demonstrates sex-biased effects, but with deleterious effects that are generally larger in females. We present new results showing that the mitochondrial–nuclear incompatibility does negatively affect male fertility, but only when males are developed at high temperatures. The temperature-dependent male sterility can be partially rescued by diet, suggesting an energetic basis. Finally, we discuss fruitful paths forward in understanding the physiological scope for sex-specific effects of mitochondrial mutations in the context of the recent discovery that many aspects of metabolism are sexually dimorphic and downstream of sex-determination pathways in Drosophila. A key parameter of these models that remains to be quantified is the fraction of mitochondrial mutations with truly male-limited fitness effects across extrinsic and intrinsic environments. Given the energy demands of reproduction in females, only a small fraction of the mitochondrial mutational spectrum may have the potential to contribute to mother’s curse in natural populations.
Collapse
Affiliation(s)
- Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Abhilesh S Dhawanjewar
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| |
Collapse
|
4
|
Bundus JD, Wang D, Cutter AD. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes. Heredity (Edinb) 2018; 121:169-182. [PMID: 29626207 PMCID: PMC6039526 DOI: 10.1038/s41437-018-0069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
5
|
Lima TG. Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat Commun 2014; 5:4743. [DOI: 10.1038/ncomms5743] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
|
6
|
Foley BR, Rose CG, Rundle DE, Leong W, Edmands S. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes. Heredity (Edinb) 2013; 111:391-401. [PMID: 23860232 DOI: 10.1038/hdy.2013.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/09/2022] Open
Abstract
Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.
Collapse
Affiliation(s)
- B R Foley
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Pritchard VL, Knutson VL, Lee M, Zieba J, Edmands S. Fitness and morphological outcomes of many generations of hybridization in the copepod Tigriopus californicus. J Evol Biol 2012; 26:416-33. [DOI: 10.1111/jeb.12060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/27/2022]
Affiliation(s)
- V. L. Pritchard
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - V. L. Knutson
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - M. Lee
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - J. Zieba
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - S. Edmands
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| |
Collapse
|
8
|
Phillips BC, Edmands S. Does the speciation clock tick more slowly in the absence of heteromorphic sex chromosomes? Bioessays 2012; 34:166-9. [PMID: 22237778 DOI: 10.1002/bies.201100164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Squamates may be an attractive group in which to study the influence of sex chromosomes on speciation rates because of the repeated evolution of heterogamety (both XY and ZW), as well as an apparently large number of taxa with environmental sex-determination.
Collapse
Affiliation(s)
- Barret C Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Willett CS. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus. ACTA ACUST UNITED AC 2011; 103:103-14. [PMID: 22016434 DOI: 10.1093/jhered/esr109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The outcome of hybridization can be impacted by environmental conditions, which themselves can contribute to reproductive isolation between taxa. In crosses of genetically divergent populations, hybridization can have both negative and positive impacts on fitness, the balance between which might be tipped by changes in the environment. Genetically divergent populations of the intertidal copepod Tigriopus californicus have been shown to differ in thermal tolerance at high temperatures along a latitudinal gradient. In this study, a series of crosses were made between pairs of genetically divergent populations of T. californicus, and the thermal tolerance of these hybrids was tested. In most cases, the first-generation hybrids had relatively high thermal tolerance and the second-generation hybrids were not generally reduced below the less-tolerant parental population for high temperature tolerance. This pattern contrasts with previous studies from crosses of genetically divergent populations of this copepod, which often shows hybrid breakdown in these second-generation hybrids for other measures of fitness. These results suggest that high temperature stress could either increase the positive impacts of hybridization or decrease the negative impacts of hybridization resulting in lowered hybrid breakdown in these population crosses.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
10
|
Complex deleterious interactions associated with malic enzyme may contribute to reproductive isolation in the copepod Tigriopus californicus. PLoS One 2011; 6:e21177. [PMID: 21731664 PMCID: PMC3120845 DOI: 10.1371/journal.pone.0021177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/22/2011] [Indexed: 11/24/2022] Open
Abstract
Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome.
Collapse
|
11
|
Cytoplasmic male sterility in Drosophila melanogaster associated with a mitochondrial CYTB variant. Heredity (Edinb) 2011; 107:374-6. [PMID: 21407254 DOI: 10.1038/hdy.2011.12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
Willett CS. The nature of interactions that contribute to postzygotic reproductive isolation in hybrid copepods. Genetica 2010; 139:575-88. [PMID: 21104425 DOI: 10.1007/s10709-010-9525-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 11/09/2010] [Indexed: 11/24/2022]
Abstract
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, CB#3280 Coker Hall, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
13
|
Willett CS, Ladner JT. Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol Biol 2009; 9:139. [PMID: 19549324 PMCID: PMC2708153 DOI: 10.1186/1471-2148-9-139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 06/23/2009] [Indexed: 11/17/2022] Open
Abstract
Background The intertidal copepod Tigriopus californicus is a model for studying the process of genetic divergence in allopatry and for probing the nature of genetic changes that lead to reproductive isolation. Although previous studies have revealed a pattern of remarkably high levels of genetic divergence between the populations of this species at several spatial scales, it is not clear what types of historical processes are responsible. Particularly lacking are data that can yield insights into population history from the finest scales of geographic resolution. Results Sequence variation in both cytochrome b (CYTB, mtDNA) and the rieske iron-sulfur protein (RISP, nuclear) are examined at a fine scale within four different regions for populations of T. californicus. High levels of genetic divergence are seen for both genes at the broader scale, and genetic subdivision is apparent at nearly all scales in these populations for these two genes. Patterns of polymorphism and divergence in both CYTB and RISP suggest that selection may be leading to non-neutral evolution of these genes in several cases but a pervasive pattern of neither selection nor coadaptation is seen for these markers. Conclusion The use of sequence data at a fine-scale of resolution in this species has provided novel insights into the processes that have resulted in the accumulation of genetic divergence among populations. This divergence is likely to result from an interplay between a limited dispersal ability for this copepod and the temporal instability of copepod habitat. Both shorter-term processes such as the extinction/recolonization dynamics of copepod pools and longer-term processes such as geological uplift of coastline and sea level changes appear to have impacted the patterns of differentiation. Some patterns of sequence variation are consistent with selection acting upon the loci used in this study; however, it appears that most phylogeographic patterns are the result of history and not selection on these genes in this species.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill NC 27599-3280, USA.
| | | |
Collapse
|